

Robert Edgar

Independent scientist robert@drive5.com www.drive5.com

Chimeras

Created during PCRFragment primes different extension

Chimeric A+B template, amplified in following rounds of PCR

Chimeras

- Annealing requires complementary bases
- Cross-over at conserved, homologous locus
- Chimeras align well to known sequences
- Hard to distinguish from biological variants

Chimeras in practice

- Frequency depends on PCR conditions
 - choice of polymerase, template concentration
 - also on community structure (less so)
- Typical frequencies
 - 5% of reads
 - 50% of OTUs -- even if high diversity (e.g. soil)
- Lower freq. possible but unusual
 - "Extreme" mock community (DADA2 paper)

Most chimeras are bi

- Bimera=2 segs, trimera=3...
 - >2 form when parent is chimeric
- Lahr & Katz (2009) found many 3+ in 700bp amplicons
- Very rare in V4 (250bp)
 - >2 almost always singleton reads
 - which should be discarded before clustering anyway

Lahr & Katz (2009) doi 10.2144/000113219

Detection algorithms

"Reference"

- Reference database provided by the user
- Ideally should be free of chimeras
 - can be a circular problem...
- "De-novo"
 - Database constructed from sequences in the reads

Chimera detection algorithms

Algorithm	Paper	Ref/dn	Method	Comments
Bellerophon	Huber <i>et al.</i> 2004	Ref	"Partial treeing"	Low sensitivity, obsolete
Pintail	Ashelford <i>et</i> <i>al.</i> 2005	Ref	Divergence from ref seq over sliding window	Low sensitivity, obsolete
ChimeraSlayer	Haas <i>et al.</i> 2011	Ref	Make 2-seg "model"	Re-implemented in mothur (much faster)
AmpliconNoise	Quince <i>et al.</i> 2011	De-novo	Make 2-seg "model"	454 only
UCHIME	Edgar <i>et al.</i> 2011	Ref & de-novo	Make 2-seg "model"	Better accuracy than ChimeraSlayer
DECIPHER	Wright <i>et al.</i> 2011	Ref	k-mer freq. in subtrees	Very low sensitivity
UPARSE	Edgar 2013	De-novo	Max parsimony	Better than UCHIME for OTU clustering
UCHIME2	Edgar 2016 (preprint)	Ref & de-novo	Make 2-seg "model"	Improved accuracy over UCHIME

UCHIME₂

Update of UCHIME

- uses top hit as a control
- new modes = heuristics + parameter settings

UCHIME2 mode	Description
balanced	Balance FPs and FNs, lowest overall error rate
sensitive	High sensitivitiy (more FPs)
specific	High specificity (few FPs, but more FNs) similar to UCHIME
high-confidence	Highest specificity (fewer FPs, but even more FNs)
denoised	For denoised amplicons, finds all perfect models

UCHIME2 algorithm

Query predicted to be chimera if alignment score > threshold

A	81	CCTTG	GTAGGC	CGt:	IGCC	CTGC	CAACTAGCTA	ATCAGACGC	ggtCCAI	CtcaCA	CCaccggl	AgtTT	TtcTC	CaCI	gTa	acc	160
Q	81	CCTTG	GTAGGC	CGC	rgcc	CTGC	CAACTAGCTA	ATCAGACGC	TCCCCAT	CCATCA	CCGATAA	ATCTT	TAAT	CTCI	TT	CAG	160
В	81	TCTTG	GTgGGC	CGt:	Facc	CeGC	CAACaAGCTA	ATCAGACGC	TCCCCAT	CCATCA	CCGATAA	ATCTT	TAAa	TCI	TT	CAG	160
Diffs	3	A	A	p	A	A	A	H	BBBB	BBB	BBBBB	BB	BBa	В	BI	BBB	
Votes	3	+	+	0	+	+	+		+++	+++	+++++	++	++!	+	+ •	+++	
Model		AAAAA	AAAAAA	AAA	AAAA	AAAA	AAAAAxxxx	XXXXXXXXXX	BBBBBBB	BBBBBBB	BBBBBBBB	BBBBB	BBBBB	BBBB	BBB	BBB	

Perfect and fake models

Perfect model if identical to query

- query may or may not be chimeric
- Fake model if query not chimeric & score > o
 - model is better match than top hit
- Perfect fake if not chimeric & exact match
- Fake and perfect fake models very common
- Error-free prediction impossible in principle!

Fake models

Region	Segld	Nr seqs in X _S	Fakes	Perfect Fakes	If query is <u>not</u> chimeric and is
V4 (~250nt)	90% 95% 97%	462 1000 1000	419 (91%) 830 (83%) 775 (78%) 640 (64%)	0 78 (8%) 483 (48%) 972 (97%)	97% identical to ref. db., 48% probability of a <u>perfect</u> fake.
	3370	1000	040 (0470)	572 (5776)	At 99% id, almost always a perfect fake, so better coverage makes problem <u>worse</u> !

Goals for chimera filtering

- How to compromise FPs and FNs?
- OTU pipeline, 97% clusters
- Chimera >3% diverged harmful
 - <u>always</u> causes spurious OTU
- Chimeras <3% diverged can also be harmful</p>
 - sometimes cause spurious OTU

Goals for chimera filtering

- False positives: discard good OTUs
- False negatives: cause spurious OTUs
- FPs and FNs <u>equally harmful</u>
 - Not typical for bioinformatics!
- Sensitivity of 90% sounds good, but...
 - 90% sensitivity = 10% FNs
 - hundreds or thousands of spurious chimeric OTUs

Chimera divergence

Parent divergence

- PD = 100% (parent identity)
- If similar parents, harder to detect
- Chimera can very similar to one parent even if large *PD*

Top-hit divergence

- D = nr. diffs between chimera & top hit
- Better indicates hard to detect (small D)
- De novo: top hit usually a parent

Chimera divergence

- Low-divergence chimeras most common
 hardest to detect
- Majority have D < 10, most common is D=1</p>

Measuring accuracy

- ChimeraSlayer & UCHIME benchmark
- Sensitivity to simulated bimeras
 - parents <u>always</u> in reference database
 - not realistic! coverage is sparse in practice
- Error rate
 - false positives on leave-one-out test
 - not realistic!

New benchmark design

- Measure dependence of accuracy on:
 - D = divergence, especially small D
 - S = similarity to closest reference sequence
- Sensitivity when:
 - "Step-parent" for segment is 100%, 99% ... 90% id (S)
- False-positives when:
 - Closest reference sequence is 100%, 99% ... 90% id (S)

New benchmark design

- Split reference db. into subsets X and Y
 - so that top hit similarity $X \leftrightarrow Y = S$, e.g. S=95%
- Make simulated bimeras C from parents in Y
 - with divergences D = 1%, 2% ... 10%
- Measure TPs with query=C, db=X
- Measure FPs with query=Y, db=X

Benchmark results

Benchmark results

Benchmark results

- High error rates if parents not in db
- Should use largest possible db (SILVA 1.8M)
- Gold (5k) misguided default for CS & UCHIME

Reference or *de-novo*?

- At <100% identity, fake models common</p>
- All databases have sparse coverage
 - Even SILVA
- Reference mode has high error rates
- De-novo on <u>filtered</u> reads also high error rates
 - Because diffs. due to errors rapidly degrade accuracy
- De-novo on <u>denoised</u> reads very effective

OTU clustering: use UPARSE

- Better than UCHIME & UCHIME2 for OTUs
 - No need to distinguish read errors from low-div chimeras

