

© Copyright 2010 Robert C. Edgar
All rights reserved

http://www.drive5.com/usearch

bob@drive5.com

Version 2.0
22 April 2010

http://www.drive5.com/usearch
mailto:bob@drive5.com

Table of Contents
Introduction .. 4

How UCLUST works ... 4

Searching ... 4

Clustering .. 5

Basic usage .. 8

Database search .. 8

De novo clustering .. 8

Simultaneous search and clustering ... 8

Multiple alignment .. 8

Input data .. 9

Sorting input by length ... 9

UCLUST file format .. 10

FASTA format .. 11

Multiple alignment FASTA format .. 12

BLAST-like format .. 13

FASTA alignment format ... 13

CD-HIT format ... 13

“Exact” and “optimal” clustering .. 13

Searching with reverse-complement (minus) strand ... 14

Search parameter tuning .. 14

Gap penalties .. 14

Considerations when using non-standard gap penalties .. 16

Evaluating fast alignment performance .. 16

Definition of identity ... 17

Computing all-vs-all pair-wise identities ... 17

Why did (or didn't) UCLUST assign sequence Q to target S? .. 17

Check UCLUST's idea of the identity of Q and S.. 17

The alignment looks bad ... 17

The identity is above the threshold, but Q wasn't assigned to S .. 18

Q was assigned to T which has lower identity than S ... 18

Quickly reproducing the state when Q was processed... 18

Command-line options.. 20

Input options ... 20

Output options .. 20

Search options .. 21

Alignment options ... 23

Miscellaneous options .. 23

Introduction
USEARCH is a database search algorithm that is hundreds of times faster than BLAST in some
applications.

UCLUST is a clustering algorithm based on USEARCH that is significantly better than CD-HIT: it is faster,
uses less memory, is more sensitive, allows clustering at lower identities, can cluster much larger
datasets and produces higher-quality clusters (higher average identity between member sequence and
the 'seed' sequence that defines the cluster).

Both USEARCH and UCLUST are implemented in a program called uclust. It combines functionality
roughly equivalent to BLASTN, BLASTP, MEGABLAST, BLASTCLUST, CD-HIT, CD-HIT-EST, CD-HIT-2D and
CD-HIT-EST-2D in a single program. The clustering method was implemented first, which is why the
program name and manual tends to emphasize UCLUST rather than USEARCH. But the search algorithm
is more fundamental and I believe it will probably turn out to be more widely used in practice, so I'm
"re-positioning" UCLUST as USEARCH.

This is copyrighted software. Licenses are available at no charge for non-commercial use.

How UCLUST works
UCLUST is a flexible program that can be used in many different ways, which can be confusing to new
users. Here is an overview of how UCLUST works to help you get a picture of what's going on.

Searching

The core step is the USEARCH algorithm that searches a database stored in memory.

A query sequence matches a database sequence if the identity is high enough. Identity is calculated
from a global alignment, i.e. an alignment that includes all letters from both sequences. This differs from
BLAST and most other database search programs, which search for local matches. A database sequence
is sometimes called a target or a seed, because a cluster of similar sequences can be grown from it.

The minimum identity is set by the --id option, e.g. --id 0.97 means that the global alignment must have
at least 97% identity. Identity is computed as the number of matching (identical) letters divided by the
length of the shorter sequence, as shown below.

Query sequence
 (from input file)

Database sequences
 ("targets" or "seeds", in memory)

Other definitions of identity might be useful—if you would like additional options, let me know.

By default, USEARCH stops searching when it finds a match. Usually USEARCH finds the best match first,
but this is not guaranteed. If it is important to find the best possible match (i.e., the database sequence
with highest identity), then you can increase the --maxaccepts option, which defaults to 1. If you want
all matches to be reported rather than the best match, then you can use the --allhits option, which will
have no effect unless you also set maxaccepts > 1.

USEARCH also stops searching if it fails to find a match. By default, it gives up after eight failed attempts.
Database sequences are tested in an order that correlates well (but not exactly) with decreasing
identity. This means that the more sequences get tested, the less likely it is that a match will be found
later, so giving up early doesn't miss a potential hit very often. You can set the maximum number to try
using the --maxrejects option. With very high and very low identity thresholds, increasing maxrejects can
significantly improve sensitivity. Here, a rule of thumb is that low identity is below 60% for amino acid
sequences or 80% for nucleotides, high identity is 98% or more.

Clustering

The UCLUST algorithm uses USEARCH internally in order to assign sequences to clusters. Each cluster is
defined by a representative sequence called a seed. Each sequence in a cluster matches the seed
according to the identity threshold, e.g. 97%.

UCLUST performs de novo clustering by starting with an empty database in memory. Query sequences
are processed in input order. If a match is found to a database sequence, then the query is assigned to
that cluster (first figure below), otherwise the query becomes the seed of a new cluster (second figure
below).

id ≥ 97%

Seed

 S E Q V E N C E

 S - Q V D N C -

4 matches

1 mismatch

Identity = matches (4) / shorter length (6) = 66.7%

Only the seeds need to be stored in memory because other cluster members don't affect how new
query sequences are processed. This is an advantage for large datasets because the amount of memory
needed and the number of sequences to search are reduced. However, this design may not be ideal in
some scenarios because it allows non-seed sequences in the same cluster to fall below the identity
threshold. I plan to add other clustering methods to future versions of UCLUST: these will probably be
slower for large datasets, but may be useful in some applications. Please let me know if there are new
features you would like to have.

Sequence added to seeds, creates new cluster

Query

Clusters

Database (seeds)
No match...

...query added to seeds...

...creates new
cluster

Query

Clusters

Database (seeds)

Query
 matches
 seed...

...so is
assigned to
that cluster

Sequence matches seed of existing cluster

mailto:bob@drive5.com

Read database from library (optional)
--lib library.fa

Get next query sequence Q from input file
--input seqs.fa

Write 'N' (no match) record

Write 'H' (hit) record

Write 'S' (new seed) record

Add Q to database

Match
found?

No Yes

Search only?
--libonly

No Yes

UCLUST flowchart

Basic usage
In the following, UCLUST refers to the program in general, and uclust stands for the binary file name.
Replace this with the appropriate file name on your system, e.g. uclust2.0.591_linuxi86_64.

Database search

In database search mode, there are two input files: the database and the query set. Each sequence in
the query set is compared with the database, which is searched for a match exceeding a specified
identity threshold. The database (also called a library) file is specified using the --lib option, e.g.:

 uclust --input seqs.fasta --lib database.fasta --uc results.uc --id 0.90 --libonly

The --libonly option is used to specify that sequences that do not match the database should not be
added to the database, which is the default action. The order of input sequences is not significant, so
there is no need to pre-sort as for the clustering options below.

De novo clustering

UCLUST generates clusters containing similar sequences. A similarity threshold is specified, say --id 0.9
which means 90% identity. Each cluster has a representative sequence (its seed); all sequences in a
cluster are required to have at least the given identity with the seed. Typical usage is:

 uclust --sort seqs.fasta --output seqs_sorted.fasta

 uclust --input seqs_sorted.fasta --uc results.uc --id 0.90

The first step is to sort the sequences in a way that is appropriate for your data. Decreasing length is
often a suitable order, which is supported by uclust through the --sort option. If you sort by some other
criteria, then you must specify the --usersort option to the clustering step. Input is a FASTA file, results
are generated in a .uc (UCLUST format) file.

Simultaneous search and clustering

By default, sequences that do not match the library become seeds for new clusters. Later sequences in
the input file may be matched to these new seeds. This mode simultaneously matches sequences to a
database and clusters those that do not match. Input sequences should be sorted appropriately as for
de novo clustering.

 uclust --input seqs_sorted.fasta --lib database.fasta --uc results.uc --id 0.90

Multiple alignment

UCLUST can create a multiple alignment of each cluster. This requires three steps: 1. clustering, 2.
conversion to FASTA (--uc2fasta), 3. inserting additional gaps (--staralign).

 uclust --input seqs_sorted.fasta --uc results.uc --id 0.90

 uclust --uc2fasta results.uc --input seqs_sorted.fasta --output results.fasta

 uclust --staralign results.fasta --output aligned.fasta

This method emphasizes speed over alignment quality. It is not intended to replace slower but more
accurate methods like MUSCLE. When the identity is reasonably high, the alignment quality will be good
enough to be informative. Note that in addition to creating a multiple alignment, a consensus sequence
is generated for each cluster. This can be useful for high-throughput evaluation of cluster quality. More
details can be found in later sections.

http://www.drive5.com/muscle

Input data
Input to UCLUST is generally in the form of FASTA files containing nucleotide or amino acid sequences.
The library (database) is stored in memory. Input sequences are processed in the order they appear,
allowing files of arbitrary size to be read sequentially with minimal use of memory. Input sequences for
de novo clustering should therefore be ordered so that the most appropriate seed sequence for a cluster
is likely to be found before other members. For example, ordering by decreasing length is desirable
when both complete and fragmented sequences are present, in which case full-length sequences are
generally preferred as seeds since a fragment may attract longer sequences that are dissimilar in
terminal regions which do not align to the seed, as in the following example.

 Seed: THESEED

 First hit: THESEEDINSERTED

 Second hit: THESEEDTERMINAL

The two hits are both 100% identical to the seed in a pair-wise alignment (see later sections for a more
detailed discussion of identity). However, the hits are extended with different terminal regions (red) and
therefore have only about 50% identity to each other.

In other cases, long sequences may make poor seeds. For example, with some high-throughput
sequencing technologies longer reads tend to have higher error rates, and in such cases sorting by
decreasing read quality score may give better results. For 16S or 18S sequences, sorting by decreasing
abundance may give significantly better results.

By default, UCLUST checks that input sequences are sorted by decreasing length, unless --libonly is
specified. This check can be disabled by specifying the --usersort option, which specifies that input
sequences have been pre-sorted in a way that might not be decreasing length.

Sorting input by length
Sorting by decreasing length is done in a separate step as follows:

 uclust --sort input.fasta --output input_sorted.fasta

The current implementation of --sort loads all sequences into memory for faster speed, so requires that
the available memory be at least as big as the input file. Larger sets can be sorted using a merge sort:

 uclust --mergesort input.fasta --output input_sorted.fasta --split 500.0

The --split option (default 1000.0) specifies the number of megabytes to use for each partition of the
input file. Typically, the maximum RAM needed for the sort will be a bit more than this, but in a worst-
case scenario can be closer to 2x the --split value, so a conservative choice is to use about half the
physically available memory. Smaller values tend to give slower speeds.

There is no need to sort sequences if --libonly is specified (because no new seeds are created).

If you want to sort by some other criteria, then you will need to write your own program or script to do
this.

UCLUST file format
The native UCLUST format (.uc) is a tab-separated text file with one line for each sequence. The cluster
number is always given. If there was a match to target sequence, then the alignment and the identity
computed from that alignment are also provided. A compressed representation of the alignment is used
to save disk space. Records are appended to the output file as they are generated in order to minimize
memory use, and sequences therefore appear in the same order as the input file.

Some example records:

Type Cluster Size %Id Strand Qlo Tlo Alignment Query Target

S 0 292 * * * * * AH70_12410 *

H 0 292 99.7 + 0 0 292M EN70_12566 AH70_12410

S 1 292 * * * * * EX70_12567 *

H 1 292 98.2 + 0 0 292M AH70_12410 EX70_12567

Each record has ten fields, separated by tabs.

 Type Record type
 Cluster Cluster number
 Size Sequence length or cluster size
 %Id Identity to the seed (as a percentage), or * if this is a seed.
 Strand + (plus strand), - (minus strand), or . (for amino acids).
 Qlo 0-based coordinate of alignment start in the query sequence.
 Tlo 0-based coordinate of alignment start in target (seed) sequence.
 If minus strand, Tlo is relative to start of reverse-complemented target.
 Alignment Compressed representation of alignment to the seed (see below), or * if a seed.
 Query FASTA label of query sequence.
 Target FASTA label of target (seed / library / database) sequence, or * if a seed.

Record types are:

 L Library seed (generated only if a match is found to this seed).
 S New seed.
 H Hit, also known as an accept; i.e. a successful match.
 D Library cluster.
 C New cluster.
 N Not matched (a sequence that didn't match library with --libonly specified).
 R Reject (generated only if --output_rejects is specified).

Records of type C and D are used when clustering. The Size field contains the cluster size, i.e. the
number of sequences in the cluster including the seed, and %Id is the average identity of non-seed
sequences to the seed. Otherwise, Size is the sequence length and %Id is the identity of the pair-wise
alignment of this sequence to the seed. For Library clusters (D), records are only output if Size > 1, i.e.
library sequences with no matches are not output. A library seed records (L) are output only if a hit is
found to this seed. This saves writing a large number of records for library sequences that are not
matched, but means that cluster numbers in the .uc file may not be consecutive (because UCLUST
internally assigns a cluster number to every library seed, whether or not it is matched).

Rejections (R) are sequences that were aligned to a seed but found to have an identity below the
threshold. Rejections are not output unless --output_rejects is specified. Using --output_rejects may
increase the size of the .uc file significantly. Rejection records are mainly useful when trouble-shooting
unexpected results.

The alignment is compressed using run-length encoding, as follows. Each column in the alignment is
classified as M, D or I:

 Code Name Query sequence Seed sequence
 M Match Letter Letter
 D Delete Gap Letter
 I Insert Letter Gap

Here, "match" simply means a letter-letter column; the letters may or may not be identical. If there are
n consecutive columns of type C, this is represented as nC. For example, 123M is 123 consecutive
matches. As a special case, if n=1 then n is omitted. So for example, D5M2I3M represents an alignment
of this form:

 Query sequence -XXXXXXXXXX

 Seed sequence XXXXXX--XXX

 Column type DMMMMMIIMMM

If a line in the output file starts with #, it is a comment and parser scripts should ignore it.

Records in the .uc file appear in the same order as the input sequences. You can sort the file using the
standard Linux sort command, as follows:

 sort -nk2 results.uc > results_sorted.uc

You can sort first by cluster number then by identity using:

 sort -n -k2 -k4 results.uc > clusters.sorted.uc

UCLUST can also do the sort:

 uclust --sortuc results.uc --output results_sorted.uc

However, the current implementation reads the entire file into memory, so may fail for very large
sequence sets.

FASTA format
UCLUST re-formats both labels and sequences when generating FASTA format output.

Labels look like this:

 >43|99.7%|AH70_12410

Here, 43 is the cluster number and 99.7% is the identity to the seed. The identity will be shown as * for
the seed:

 >43|*|AH70_12200

If a .uc record has an alignment, then the query sequence is re-formatted to indicate its pair-wise
alignment to the seed. Gaps indicate deletions relative to the seed, lower-case indicates insertions
relative to the seed. Here is an example:

>43|99.7%|TheSeed

SEQVENCE

>43|96.0%|NonSeed

S-QLENnCE

This represents the following pair-wise alignment:

 TheSeed SEQVEN-CE

 NonSeed S-QLENNCE

You can convert UCLUST to FASTA format as follows:

 uclust --uc2fasta results.uc --input seqs.fasta --output results.fasta [--types XYZ...]

Here, seqs.fasta must be the same input file used when generating results.uc. The --types option
specifies which record types to convert, default is SH (seeds and hits). It is not valid to use L or D in
--types because these refer to library sequences and the current implementation extracts sequences
from the input set only. Using --types enables some convenient idioms, as in the following examples.

Create non-redundant database

 uclust --input seqs.fasta --uc results.uc --id 0.90

 uclust --uc2fasta results.uc --types S --output nr.fasta

Assign to non-redundant database, cluster unmatched sequences and create new library

 uclust --input seqs.fasta --lib nr.fasta --uc results.uc --id 0.90

 uclust --uc2fasta results.uc --types S --output newlib.fasta

Multiple alignment FASTA format
Alignments generated by --uc2fasta are saved in a specialized FASTA format. You can convert to a more
conventional multiple alignment format by using --staralign:

 uclust --staralign results.fasta --output star.fasta

The results.fasta file must be sorted by cluster number.

Gaps are added so that each sequence in a given cluster has the same length. Letters that are aligned to
the same position in the seed appear in the same column and are in upper case. Deletions relative to the
seed are indicated by dashes. Insertions relative to the seed are indicated in lower-case, and should not
be considered aligned to each other. The seed sequence is the last sequence is a special case that
represents a consensus sequence. If the position is 100% conserved, i.e. if all letters in that column are
identical, then an upper case letter is used. Otherwise, seed letters are lower-case.

BLAST-like format
Alignments generated during clustering or database search can be saved in a human-readable BLAST-like
format by using the --blastout option, e.g.:

 uclust --input seqs.fasta --lib greengenes.fasta --libonly --blastout hits.blast

Since this format is rather verbose, the file size will be much larger than the corresponding .uc file. This
format may be changed in future versions, so it is recommended that parsers use the FASTA output
generated by --fastapairs instead (see next).

FASTA alignment format
Alignments generated during clustering or database search can be saved in FASTA format by using the
--blastout option, e.g.:

 uclust --input seqs.fasta --lib greengenes.fasta --libonly --fastapairs hits.fasta

This format is probably the most convenient for parsers that need to derive information from explicit
alignments. Pairs are separated by blank lines, to make the file easier to inspect visually. The query
sequence is first, the target (seed, database) sequence is second. If the input sequences are nucleotides,
then a + or - is appended to the label of the target sequence to indicate the strand. If the strand is -
(reverse strand match), then the target sequence is reverse-complemented.

CD-HIT format
The CD-HIT .clstr format is supported for the benefit of code already written for that format. You can
convert UCLUST format to and from .clstr as follows:

 uclust --uc2clstr results.uc --output results.clstr

 uclust --clstr2uc results.clstr --output results.uc

 “Exact” and “optimal” clustering
An "optimal" variant of the algorithm is specified by --optimal, which is equivalent to these options:

 --maxaccepts 0 --maxrejects 0 --nowordcountreject

This guarantees that every seed will be aligned to the query, and that every sequence will therefore be
assigned to the highest-identity seed that passes the identity threshold (t). All pairs of seeds are
guaranteed to have identity < t. The number of seeds is guaranteed to be the minimum that can be
discovered by greedy list removal, though it is possible that the number of clusters could be reduced by
using a different set of seeds.

An "exact" variant of the algorithm is selected by --exact, which is equivalent to:

 --maxaccepts 1 --maxrejects 0 --nowordcountreject

This guarantees that a match will be found if one exists, but not that the best match will be found.

The exact and optimal variants are guaranteed to find the minimum possible of clusters and both
guarantee that all pairs of seeds have identities < t. Exact clustering will be faster, but may have lower

average identity of non-seeds to seeds. "Optimal" and "exact" are misleading names that ideally should
be changed. They are retained for backwards compatibility.

Searching with reverse-complement (minus) strand
By default, UCLUST seeks nucleotide matches in the same orientation (i.e., plus strand only). You can
enable both plus and minus strand matching by using --rev. In the current implementation, using --rev
approximately doubles memory use but results in only small increases in execution time. Optimizations
are possible that would avoid most of the increase in memory, but would be a fair amount of work to
implement and so far do not appear to be worth the effort.

Search parameter tuning
UCLUST offers a number of parameters for adjusting speed and sensitivity. The characteristics of
datasets found in practice are highly variable, and it is therefore challenging to set universally
appropriate defaults or to develop simple guidelines to assist users in setting the best parameter values
for particular applications. With these considerations in mind, the following procedure is suggested for
tuning parameters. (See also the section below Evaluating fast alignment performance).

A dataset is first clustered at low identity (say, 50% for proteins or 80% for nucleotides) using default
parameters, giving an initial set S of clusters. A subset F is then extracted from S for performance tuning
analysis. The redundancy of F at higher identities, e.g. 90%, will typically be similar to S, meaning that
the average cluster size will be similar. If F is small enough, the exact or optimal variants can be used as
a reference against which faster but potentially less sensitive parameters can be compared. Redundancy
is the most important factor in determining elapsed time (which scales roughly linearly in the number of
sequences N and the number of clusters M) and memory use (which scales roughly linearly in M), unless
M becomes very large. Time or memory use on S with a given set of parameters can therefore be
estimated as |S|/|F| x (time or memory on F). If the exact variant is prohibitively expensive on F, an
alternative is to use parameters designed for high sensitivity while retaining some speed heuristics, e.g.

 --maxaccepts 1 --maxrejects 128 --step 0 --bump 0.

See also the --check_fast option, described next.

Gap penalties
UCLUST supports a rich set of gap penalty options. Up to 12 separate penalties can be specified: all
combinations of query / target, left / interior /end, and open / extend.

The following table gives the penalties that UCLUST uses by default.

 Query - - T H I S I S T H E Q U E R Y - -

Target A N D H E R E - - T H E T A R G E T

Left end gap in
query

Interior gap in
target

Right end gap
in query

Penalty Default

Interior gap open 10.0 (nucleotide)
17.0 (amino acid)

Terminal gap open 1.0

Interior gap extend 1

Terminal gap extend 0.5

Terminal gaps are penalized much less than interior gaps, which is typically appropriate when fragments
are aligned to full-length sequences. These defaults can be changed using the --gapopen and --gapext
options. The nucleotide defaults would be set using these options:

 --gapopen 10.0I/1.0E --gapext 0.5

A numerical value for a penalty is optionally followed by one or more letters that specify particular types
of gap. Here, "10.0I" means "Interior gap=10.0", and "1.0E" means "End gap=1.0". If no letters are given
after the numerical value, then the penalty applies to all gaps. More than one letter can be specified, so
for example "0.5IE" means "Interior and End gaps=0.5", which is the same as all gaps. Following are valid
letters: I=Interior, E=End, L=Left, R=Right, Q=Query and T=Target. If more than one numerical value is
specified, then they must be separated by a slash character '/'. White space is not allowed. If a star ('*')
is used as the numerical value, then the gap is forbidden. Using * in an open penalty means that the gap
will never be allowed, using * in an extension penalty means that gaps longer than one will be
forbidden. So, for example, *LQ in --gapopen means "left end-gaps in the query are not allowed". A sign
(plus or minus) is not allowed in the numerical value, which can be integer or floating-point (in which
case a period '.' must be used for the decimal point). The --gapopen and --gapext options are interpreted
first by setting the defaults, then by scanning the string left-to-right. Later values override previous
values.

The final settings are written to the --log file, and I strongly recommend that you use this information to
check that your options are correctly formatted. Here is another set of example options.

 --gapopen 10.0QL/*QL/2.0TE/1.0QR --gapext 0.5I/0.1E

The resulting penalties appear as follows in the log file.

 10.00 Open penalty (query, internal)

 * Open penalty (query, left end)

 1.00 Open penalty (query, right end)

 10.00 Open penalty (target, internal)

 2.00 Open penalty (target, left end)

 2.00 Open penalty (target, right end)

 0.50 Ext. penalty (query, internal)

 0.10 Ext. penalty (query, left end)

 0.10 Ext. penalty (query, right end)

 0.50 Ext. penalty (target, internal)

 0.10 Ext. penalty (target, left end)

 0.10 Ext. penalty (target, right end)

Considerations when using non-standard gap penalties
The --gapopen and --gapext options do not always work well with the fast alignment heuristics that are
enabled by default. In some cases, especially if some gap types are forbidden, then this can cause
UCLUST to crash.

If possible, the best thing to do is to disable the heuristics by using --nofastalign. Then the gap penalties
should work well. If you have very large datasets and heuristics are needed, then I recommend testing
on small datasets and reviewing the --blastout file to make sure that the alignments look reasonable for
your application.

A compromise that often works well is to disable HSPs by using --hsp 0. In typical applications, banding
will still give improvements in speed without significantly degrading alignment accuracy or estimates of
identity.

Evaluating fast alignment performance
The --check_fast option performs an automated analysis of the --fastalign heuristics. With --check_fast,
whenever a pair-wise alignment is constructed, UCLUST compares the alignment with and without fast
heuristics (HSPs and banding). Results are written to the --log file. Here is an example.

Pair-wise alignment statistics

 1183407 Alignments

 1113873 Hits (94.1%)

 718023 Fast alignments same as slow (hits) (64.5%)

 774833 Fast alignments same as slow (all) (65.5%)

 4302 No HSPs found (0.4%)

 188 Alignments with HSPs not in slow (0.0%)

 3131 Rejected by low HSP id (0.3%), 0 are FPs (0.0%), 1 are FNs (0.0%)

 6319 Heuristic %id > 1% error vs. slow (0.5%)

 0 Heuristic false-positive hits (0.0%)

 4163 Heuristic false-negative hits (0.4%)

 2.65e+012 CPU time for slow alignments

 1.45e+011 CPU time for fast alignments

 18.3 Alignment time speedup by using heuristics

Here, 'slow' means without fast heuristics, i.e. using full dynamic programming as with --nofastalign.
1.1M alignments were made, and 94% of these were hits. This shows the effectiveness of the UCLUST
index and filtering algorithm: almost all alignments confirmed putative hits. About 2/3 of alignments
were the same with and without the --fastalign heuristics: 64.5% of alignments for hits, and 65.5%
overall. So about 1/3 of alignments were sub-optimal in terms of maximizing the objective score.
However, the statisitcs show that these sub-optimal alignments make little difference in estimating the
query-target identity. There was just one false negative (FN) due to rejection of a target sequence based
on the low identity of its HSP(s), and no false positives (FPs). In only 6.3k/1.1M cases (0.5%) was the
identity estimated using a fast heuristic alignment more than 1% different from the identity computed
from the full dynamic programming alignment. There were no false positive hits and only 4.2k/1.1M
false negative hits, i.e. 0.4%. In most cases, this low "error" rate is well worth the 18x speed
improvement achieved by using --fastalign. And in general, it is not certain that the full dynamic
programming alignments are really better than the heuristic alignments, so it is not clear whether these
are true biological "errors".

Definition of identity
UCLUST computes identity from a global alignment as:

 (number of letter-letter columns containing identical letters) / (length of shorter sequence).

It is straightforward to modify UCLUST to support other definitions of identity—please let me know if
another measure would be useful for you. Using the --blastout option is useful for visual review of
alignments and identities.

Computing all-vs-all pair-wise identities
You can compute all pair-wise identities for a set of input sequences as follows:

 uclust --input seqs.fasta --lib seqs.fasta --usersort --allhits

 --libonly --maxaccepts 0 --maxrejects 0 --id 0 --uc allpairs.uc

Why did (or didn't) UCLUST assign sequence Q to target S?
This is the most common question I get about UCLUST results. The following notes walk you through the
process of figuring out why UCLUST didn't do what you expected.

Check UCLUST's idea of the identity of Q and S

The first thing to check is the identity of Q and S according to the UCLUST alignment. If this is above
(below) the threshold, this would explain why it was (was not) assigned to the target. First make a file
qs.fa containing just Q and S, then:

 uclust --input qs.fa --usersort --id 0.0 --blastout qs.blast --uc qs.uc

You can check the identity in the .uc file, and see the alignment and identity calculation in the .blast file.

The alignment looks bad

If the .blast alignment looks bad, this may be caused by the heuristics (HSPs and banding) used by
UCLUST to make fast alignments. You can check this manually by repeating with --nofastalign:

 uclust --input qs.fa --usersort --id 0.0 --blastout qs.blast --uc qs.uc --nofastalign

UCLUST can do this automatically by using --check_fast, in which case you should use the same --id that
you used for clustering, say:

 uclust --input qs.fa --usersort --id 0.90 --check_fast --log qs.log

A report will be written to the log file. See the section "Evaluating fast alignment heuristics" for more
information.

You can reduce the number of bad alignments by using --nofastalign, which does full global dynamic
programming alignments with no heuristics. This will be slower, but will produce alignments of
comparable quality pair-wise alignments by tools like MUSCLE and CLUSTALW.

If --nofastalign is unacceptably slow, you can compromise by tweaking the heuristics. E.g., you can
increase the band radius by using the --band option.

The identity is above the threshold, but Q wasn't assigned to S

There are two cases: Q was assigned to a different target (next section below), or no match was found.

If no match to S was found, there are three possible explanations:

1. S was rejected because the word count was too low.
2. S was rejected because the HSP identity was too low.
3. S was not tested because the search was abandoned before reaching S.

Cases 1 and 2 can be checked by clustering a file containing just S and Q. Make sure S comes first so that
it becomes the seed. Then:

 uclust --input qs.fa --usersort --id ...

Use the same --id and other search options that you used in your original run. If Q is assigned to S, this
means that in your original run, the search must have been abandoned before reaching S. If Q is not
assigned to S, but has a high enough identity in your first test, then S must have been rejected because
the word count or HSP identity was too low. You can check whether it was the word count by setting the
--nowordcountreject option. If S was rejected because of a low word count, now Q should be assigned
to S.

You can check rejections by repeating your original run with --output_rejects. If repeating your original
run is time-consuming, a later section below explains how to reproduce what happened to Q more
quickly. With output_rejects, Reject records (R in column 1) are written to the .uc file. If there is a reject
record for S, this is due to case 1 or 2 above, or because the identity calculated from an alignment is too
low (as discussed earlier). If there is no reject record for S, then S was never tested and the search was
abandoned too early. This is expected to happen in rare cases because target sequences are tested in an
order that correlates approximately with identity, but not exactly. It can therefore happen that UCLUST
gives up the search when in fact there is match lower in the list. The frequency of this type of false
negative can be reduced by increasing the --maxrejects option.

Q was assigned to T which has lower identity than S

This also happens occasionally because of the order in which UCLUST checks target sequences. Since the
order does not exactly correlate with identity, there may be a better match lower in the list, but is not
found because the first match found is accepted by default. The frequency of these sub-optimal hits can
be reduced by increasing --maxaccepts, which defaults to 1. Generally you should increase --maxrejects
also, otherwise UCLUST will give up after only 8 rejections, which limits the total number of sequences
tested and prevents UCLUST from getting deep into the list of potential hits.

Quickly reproducing the state when Q was processed

If you are using --libonly, you can make an input file containing just Q. The database in memory doesn't
change, so Q should be processed in exactly the same way as in your full run. It should then be very fast
to try the following techniques with the entire database instead of just one or two targets.

Use --blastout to review the alignment and identity calculation.

Use --nofastalign or --check_fast to compare alignments with and without heuristics.

Use --output_rejects to review rejections.

If you are not using --libonly, then the database grows over time and you need to know exactly which
sequences were in the database when Q was processed. The can be determined from the .uc file. Each
new seed is indicated by an S record. So extract all S records in the .uc file that appear before Q, and call
this file seeds.uc. Convert seeds.uc to a FASTA library:

 uclust --uc2fasta seeds.uc --input seqs.fa --output seeds.fa --types S

If you used --lib, add that in too:

 cat lib.fa >> seeds.fa

Now you can process Q in exactly the same way as your original run without waiting for other sequences
to be processed first. Put Q into a file q.fa, then:

 uclust --input q.fa --lib seeds.fa ...other options as in original run...

Command-line options

Input options
Option Description

--input filename Input file containing query sequences. FASTA format. By default, must be
sorted by decreasing sequence length (see --usersort).

--lib filename Library file. FASTA format. This is used to initialize the search database in
memory. By default, the initial database is empty.

--usersort By default, UCLUST requires that the input file is sorted by length, and will
fail if it is not. Specify --usersort to indicate that file is sorted by some other
criteria (or is not sorted at all but you think this is OK). For de novo
clustering, input should be sorted so that a suitable seed sequence will
appear before other members of the cluster. If the input includes both full-
length sequences and fragments, then sorting by decreasing length is
usually the best approach.

--maxlen L Ignore query sequences that are longer than L. Default 10000. UCLUST is
currently not designed to handle very long sequences. If you increase this
value significantly, then UCLUST may fail due to lack of memory or for
other reasons. Let me know if you have applications that need longer
sequence lengths.

--minlen L Ignore query sequences that are shorter than L. Default 16.

--amino Specifies that input sequences use the 20-letter amino acid alphabet. By
default, UCLUST 'guesses' this from the frequencies of AGCTU in the first
few sequences.

--nucleo Specifies that the input sequence use a nucleotide alphabet. By default,
UCLUST 'guesses' this from the frequencies of AGCTU in the first few
sequences.

Output options
Option Description

--trunclabels Truncate FASTA labels at the first whitespace character.

--allhits Write all hits to the .uc file. By default, only the best hit found is written.
To get more than one hit, you must specify --allhits and set --maxaccepts
to a value > 1.

--[no]output_rejects Write reject records to the .uc file. By default, rejects are not written
(--nooutputrejects). This is mainly useful for trouble-shooting unexpected
results.

Option Description

--log filename Write a log file with miscellaneous information. I recommend that you try
this and take a look at the output, you might find some of it helpful.

--blastout filename Output file for human-readable alignments in a BLAST-like format. This
format may be changed in future versions, so it is recommended that
parsers use the FASTA output generated by --fastapairs instead.

--fastapairs filename Output file for pair-wise alignments in FASTA format. Pairs are separated
by blank lines, to make the file easier to inspect visually. The query
sequence is first, the target (seed, database) sequence is second. If the
input sequences are nucleotides, then a + or - is appended to the label of
the target sequence to indicate the strand. If the strand is - (reverse strand
match), then the target sequence is reverse-complemented.

--rowlen n Row length for --blastout file. Default 64.

--idchar c Character annotating identities in --blastout file. Default '|'.

--diffchar c Character annotating differences in --blastout file. Default blank .

--[no]blast_termgaps [Don't] output terminal gaps to --blastout file. Default --noblast_termgaps.

Search options
Option Description

--id f Minimum identity to accept a hit. Floating point number in range 0.0 to
1.0. Default 0.9.

--maxaccepts n Keep searching until n hits have been found, then report the best. Default
1. Zero means infinity, i.e. don't stop however many matches have been
found (but will still stop if the maximum number of rejects has occurred).
Use --maxaccepts 0 --maxrejects 0 to force a search of the entire database
with every query, this guarantees that the best hit will be found, if one
exists.

--maxrejects n Keep searching until n rejects have occurred, then report a failure to find a
hit. Default 8. Zero means infinity, i.e. keep searching until all a hit is found
or database sequences have been tested.

--w n Word length for unique word index. Default is 8 for nucleotides, 5 for
amino acids. It is not clear whether these defaults are good in all
applications; further research is needed to understand this better.

--[no]wordcountreject By default, --wordcountreject is enabled so that target sequences are

Option Description

rejected if they have too few unique words in common with the query
sequence. The threshold is estimated using heuristics. This improves
speed, but may also reduce sensitivity. Using --nowordcountreject disables
word count rejection.

--bump n By default, an optimization called "threshold bumping" is used to reduce
the search space when many target sequences are found to pass the word
count threshold. This may reduce sensitivity slightly, and may increase the
probability that the top hit is not found, but often improves speed
significantly when the database is large. Default is --bump 50. Use --bump
0 to disable bumping.

--stepwords n By default, an optimization called "stepping" is used to speed up database
searching. This is effective when the number of words in common between
the query and target is expected to be large. Then it is expensive to check
all words, and stepping selects a subset of words in the query. By default,
--stepwords is 8. This means that the number of query words is chosen so
that approximately 8 words are expected to be found in the target
sequence. Use --stepwords 0 to disable stepping. As with bumping,
stepping may reduce sensitivity and may reduce the probability that the
best hit is found first.

--rev By default, UCLUST searches only the plus strand for nucleotide sequences.
If --rev is specified, then UCLUST will also search the reverse-comp-
lemented sequence.

--libonly By default, if no hit is found, UCLUST will add the query sequence as a new
seed. If --libonly is specified, this does not happen. Using --lib and --libonly
is appropriate for database search applications.

--self Used for searching a database against itself, e.g. to reduce redundancy. If
the target and query labels are identical, the target is ignored. Typical use
is uclust --input lib.fa --lib lib.fa --libonly --self --uc results.uc.

--idprefix n Require that the first n letters of query and target are identical. Default
zero.

--exact Same as --maxrejects 0 --nowordfilter. Guarantees that a hit will be found
if one exists.

--optimal Same as --maxrejects 0 --maxaccepts 0 --nowordfilter. Similar to --exact
but also guarantees that the best hit will be found.

Alignment options
Option Description

--match s Match score for nucleotides. Default 2.0.

--mismatch s Mismatch score for nucleotides. Default -1.0.

--gapopen s Gap open penalty specification. Format is described elsewhere in this
manual.

--gapext s Gap extension penalty specification. Format is described elsewhere in this
manual.

--[no]fastalign Default is --fastalign. Specify --nofastalign to disable fast alignment
heuristics (HSPs and banding).

--hsp Minimum length for an HSP. Default 32. Specify zero to disable HSPs.

--hspscore s Minimum score/column for an HSP. Default 1.0.

--band n Radius of band for banded dynamic programming between HSPs. Default
16. Specify zero to disable banding.

--check_fast Compare results using alignments with and without fast heuristics and
generate a report in the --log file.

Miscellaneous options
Option Description

--quiet Don't write progress messages to standard error.

--version Write version to standard output and exit.

--help Write command-line help to standard output and exit.

