

Software and documentation

© Copyright 2010-11 Robert C. Edgar

All rights reserved

http://drive5.com/usearch

robert@drive5.com

Version 5.2

October 15, 2011

http://drive5.com/usearch
mailto:robert@drive5.com

— 2 —

Table of Contents
Table of Contents .. 2

USEARCH .. 7

License .. 7

Installation ... 7

Executable filename .. 7

USEARCH overview .. 8

Basic usage: clustering with UCLUST ... 9

Seed sequences .. 9

Sorting the input sequences ... 9

Non-redundant database: sort by decreasing length .. 9

OTU identification ... 9

The --cluster command.. 9

Output files .. 10

Consensus sequences... 10

The --usersort option ... 10

Basic usage: database search with UBLAST .. 11

Database format... 11

Search command ... 11

U-sorting.. 11

Number of targets tested ... 11

Nucleotide, protein and translated searches .. 12

Output files .. 12

Search strategy .. 13

Database ... 13

Search order ... 13

Search termination (U-sorted or S-sorted only) .. 14

Alignment .. 14

Similarity measures ... 15

Word counting ... 15

Sorting sequences for clustering ... 16

Don't sort if you're doing database search ... 16

Sorting by decreasing length ... 16

— 3 —

Sorting by decreasing cluster size (abundance) .. 16

Searching... 18

Search order... 18

Query-target comparison ... 19

Alignment parameters and heuristics .. 19

Similarity measure... 19

Search termination .. 20

Accepts and rejects .. 20

Termination conditions ... 20

Maximum accepts .. 20

Maximum rejects ... 20

Search and clustering at high identities ... 20

Search and clustering at medium identities ... 21

Search at low identities ... 21

Output files.. 22

The UCLUST file format .. 22

UCLUST to FASTA conversion ... 24

BLAST6 format... 25

BLAST-like alignment format .. 25

FASTA alignment format.. 26

CD-HIT format .. 27

User-defined output ... 27

Saving indexes to disk saves time and memory.. 30

UDB and WDB indexes .. 30

Why use an index? ... 30

Creating a UDB database .. 30

Searching a UDB database .. 30

The UDB --accel parameter .. 31

The UDB --threads parameter ... 31

Splitting large UDB databases no longer required .. 31

Creating a WDB database ... 31

Searching a WDB database ... 31

Compressed indexes save memory ... 33

Suggested parameter settings .. 33

— 4 —

Choosing the best word length .. 33

Setting the best table size .. 34

Memory requirements for a compressed index ... 34

Dereplication: discarding identical sequences .. 35

Dereplication of full-length identical sequences ... 35

Finding a prime number .. 35

Fast dereplication for huge datasets .. 35

Dereplication of identical sub-sequences .. 36

Denoising: correcting sequencer error .. 37

Denoising support in USEARCH is a work in progress ... 37

When can you denoise by clustering? ... 37

Using a consensus sequence .. 37

The --consout option for cluster consensus sequences.. 38

Strategy for denoising by clustering.. 38

Warning ... 39

Replacing CD-HIT-454 with USEARCH ... 39

Using the --minsize option to discard small clusters... 39

Chimera detection in single-region reads .. 39

Amplicon and abundance estimation for UCHIME de novo mode .. 40

Warning ... 40

OTU identification using USEARCH ... 41

UBLASTX: Translated ORF search ... 42

Frame-shifts ... 42

ORF identification ... 42

Search and output .. 42

UHIRE: hierarchical clustering, clumping and large multiple alignments 43

Warning ... 43

The .hire file format .. 44

Large multiple alignments ... 45

Parameter tuning ... 47

Improved sensitivity for distant proteins ... 47

Choose suitable quality measures ... 47

Quality measures for clustering ... 47

Quality measures for database search .. 47

— 5 —

Construct a query set that is small enough for testing... 47

Test with increasing values of --maxrejects .. 47

Test with increasing values of --maxaccepts... 48

U-sort word length .. 48

Tune alignment heuristics ... 48

USTAR: Fast multiple alignment of clusters .. 49

Gap penalties and substitution scores ... 50

E-value calculation .. 50

Substitution scores for nucleotides .. 50

Substitution matrix for amino acids .. 50

Gap penalties for local alignments .. 51

Gap penalties for global alignments .. 51

Considerations when using non-standard gap penalties .. 52

Sequence identity .. 53

Terminal gaps .. 53

Default definition of identity, --iddef 0 ... 54

All-diffs definition, --iddef 1 ... 55

Internal diffs definition, --iddef 2 .. 55

Marine Biological Laboratory definition, --iddef 3 .. 55

BLAST definition, --iddef 4 .. 55

Wildcard letters ... 55

UCHIME: Chimeric sequence detection .. 57

Memory requirements ... 58

Search plus strand only ... 58

Compressed indexes .. 58

Database stepping .. 58

Reducing redundancy .. 58

Trimming sequence labels ... 58

Splitting the database .. 59

Two-level search ... 59

Command line reference ... 61

Algorithms ... 61

Sorting ... 61

File format conversions ... 61

— 6 —

Output files .. 62

Database search order.. 63

Search termination... 63

Accept / reject criteria ... 64

Weak match criteria in UBLAST .. 65

Alignment style options .. 65

Alignment scoring parameters .. 66

Alignment heuristics ... 66

Karlin-Altschul statistics and E-value calculation .. 67

Other options ... 68

— 7 —

USEARCH
USEARCH is a program that implements several algorithms for fast sequence database search,

clustering and related tasks.

License
USEARCH is copyrighted software and generally requires a paid license. Licenses to use the 32-

bit binaries are available at no charge for approved non-commercial use.

Installation
USEARCH is distributed as a stand-alone binary (executable file). The binary is self-contained:

it does not require configuration files, environment variables, third-party libraries or other

external dependencies. There is no setup script or installer because they're not needed. All you

need to do is download or copy the binary file to a directory that is accessible from the computer

where you want to run the code. For more information, please see

http://drive5.com/cmdline.html.

Executable filename
The file name of the binary file includes the platform and version number, e.g.

usearch5.0.150_i86linux32 is the 32-bit binary for version 5.0.150 on Intel i86 architecture

Linux. In this documentation, 'usearch' (lower-case) will be used for the command name. Where

you see 'usearch', you should replace this with the appropriate command name for your system.

For example, this is a generic command:

 usearch --cluster input.fasta --uc results.uc --id 0.97

On your system, you would use something like this:

 usearch5.0.150_i86linux32 --cluster input.fasta --uc results.uc --id 0.97

Or, if you like, you can change the name of your executable file to usearch, which is easier to

remember and type.

http://drive5.com/cmdline.html

— 8 —

USEARCH overview
The USEARCH program implements several algorithms with a rich set of options. This table

gives a brief summary of its most popular capabilities.

Category Common uses

Database search (UBLAST). Capabilities similar to BLASTP, BLASTN and BLASTX. In

addition. UBLAST offers fast search options that can achieve

speed improvements over BLAST of 100 to 1000× with good

sensitivity to distant relationships (down to around 75% id for

nucleotides or 30% id for proteins). Used in a wide variety of

sequence classification tasks. Supports both local and global

alignments for search (BLAST is strictly local).

Clustering (UCLUST). Create non-redundant ("NR") and reduced-redundancy ("RR")

databases.

Dereplication: removing identical (sub-)sequences.

Denoising: removing sequencer error.

Identify Operational Taxonomic Units (OTUs) from single-

region environmental sequencing reads (e.g. 16S or ITS).

Database search with clustering

of unmatched sequences

(UCLUST).

Extend a previously clustered database by adding new sequences

(saves compute resources compared with clustering again from

scratch.)

Chimera detection (UCHIME). Search for chimeric sequences de novo or using a trusted

reference database that is believed to be chimera-free. Please see

to the UCHIME documentation for details.

http://www.drive5.com/uchime

— 9 —

Basic usage: clustering with UCLUST
This section describes the most popular options for the UCLUST clustering algorithm. Many

advanced options are also provided; these are described in later sections.

Seed sequences
UCLUST creates clusters defined by seed sequences. Each cluster has exactly one seed, which is

a sequence from the input set. The user specifies an identity threshold using the --id command-

line parameter. For example with --id 0.97, other members of the cluster must have identity at

least 97% identity with the seed. Another term for a seed is a representative sequence.

Sorting the input sequences
Input sequences should be sorted in an appropriate order as a pre-processing step before

clustering. UCLUST processes sequences in the order they appear in the input file. If a sequence

matches an existing seed, then it is assigned to that cluster; otherwise it becomes the seed of a

new cluster. This means that sequences should be sorted such that the most appropriate seed for a

cluster tends to appear first. Suggested sort orders for two common applications follow.

Non-redundant database: sort by decreasing length
UCLUST can create a non-redundant or reduced-redundancy database from an input set

containing families of similar sequences. In this case, the generally recommended sort order is by

decreasing length. Sorting by length can be done using the following usearch command.

usearch --sort seqs.fasta --output seqs.sorted.fasta --log usearch.log

Sorting by length is effective when some sequences are exact or approximate fragments of other

sequences. A full-length sequence is usually a better choice of seed than a fragment. If the

database is too large to fit in memory, the --mergesort command can be used.

OTU identification
UCLUST is often used to identify Operational Taxonomic Units (OTUs) from environmental

sequencing of a region such as the bacterial 16S ribosomal RNA gene or fungal ITS. While it is

common practice to use a single clustering step for this task, typically with a 97% identity

threshold, I do not recommend doing this. Rather, I suggest using my otupipe script or a similar

sequence of commands.

The --cluster command
Clustering is performed using --cluster. This is a typical command line.

usearch --cluster input.sorted.fasta --id 0.97 --seedsout seeds.fasta

 --uc results.uc --log usearch.log

The --id option specifies the identity threshold. In this example, sequences in a given cluster

must have ≥ 97% identity with its seed sequence. Note that the --id parameter is specified as a

fractional identity in the range 0.0 to 1.0, not a percentage.

http://drive5.com/otupipe/

— 10 —

Output files
The most popular output file options for clustering are --seedsout, which produces a FASTA file

containing the seed sequences (i.e., a non-redundant or reduced-redundancy subset of the input),

and --uc, which reports results in a custom file format designed to be easily parsed by a script or

manipulated by standard Linux commands such as cut, grep and sort. The --uc file format is

described in detail later. Other output file options include --userout, --blastout, --blast6out,

--fastapairs and --consout (see next). For more details, see Output Files.

Consensus sequences
The --consout fastafile option produces consensus sequences for each cluster in the FASTA file.

The consensus sequence is generated by creating a multiple alignment of the cluster and taking

the majority symbol (letter or gap) from each column. If the majority symbol is a gap, the

column in skipped. Terminal gaps are ignored unless the --cons_termgaps option is specified. In

some applications, the consensus sequence is a better model of the cluster than the seed

sequence. For example, if you are clustering next-generation reads, then the longest sequence in

the cluster tends to have more errors, and taking the consensus tends to correct the errors.

The --usersort option
By default, the sort order is assumed to be by decreasing length, and a fatal error occurs if

sequences are found to be out of order. The --usersort option specifies that another sort order was

used, so is required for abundance sorting and other orders.

— 11 —

Basic usage: database search with UBLAST
This section describes the most popular options for the UBLAST database search algorithm.

Many advanced options are also provided; these are described in later sections.

Database format
UBLAST can use FASTA files for both the query and database sequences. You don't have to use

a program like formatdb or makeblastdb as for BLAST. If you are going to make several

searches of a larger database, then it can be faster and save memory to pre-compute the index

and store it to disk. See sections on udb and wdb index files.

Search command
Here is an example of a typical database search command-line.

usearch --query query.fasta --db db.fasta --blastout results.blast

 --blast6out results.b6 --evalue 0.01 --log usearch.log

The query and database FASTA files are specified by the --query and --db parameters. The

--evalue option specifies the maximum E-value for a hit.

U-sorting
UBLAST is designed to quickly find one strong hit, which will often be the best hit in the

database. This differs from traditional search algorithms like BLAST, which are designed to find

all possible hits in the database. UBLAST tests database sequences in order of decreasing

number of short words in common with a given query sequence (U-sorted order). Similar

sequences tend to have more words in common, so the first hit found is often the strongest hit in

the database, or one of the best. By default, UBLAST terminates a search when the first hit is

found, which can dramatically improve search speeds. This strategy can be disabled by using the

--nousort option. If --nousort is specified, USEARCH tests all database sequences using an

algorithm very similar to BLASTP or BLASTN. Depending on the database size and other

options specified, this may be much slower than U-sorting.

Number of targets tested
UBLAST will abandon a search if too many database sequences (targets) have been tested

without finding a hit. The maximum number of targets to be tested can be set using the

--maxaccepts and --maxrejects parameters. Increasing these values so that more targets are tested

tends to improve sensitivity, but reduces speed. If the database is very large, and / or if low-

identity hits are desired, then sensitivity can be significantly improved by increasing these

parameters. If you have, say, millions of proteins and are looking for hits that may have <50%

identity, then you may get better results with --maxrejects values of 100 or 1000, or even larger.

The --maxrejects option is ignored if U-sorting is disabled, i.e. if --nousort is specified.

— 12 —

Nucleotide, protein and translated searches
USEARCH can perform nucleotide searches (like BLASTN), protein searches (like BLASTP)

and translated searches (like BLASTX). USEARCH automatically detects the alphabet of the

query and database sequences. The type of search is determined per the following table.

Query sequences Database sequences Search

Nucleotide Nucleotide Nucleotide (like BLASTN)

Amino acid Amino acid Protein (like BLASTP)

Nucleotide Amino acid Translated ORFs (like BLASTX
1
)

Amino acid Nucleotide Not supported in this version.

1
USEARCH uses ORFs as queries, BLASTX does not.

Output files
Output file options include --blastout (human-readable, BLAST-like), --blast6out (tabbed format

compatible with the -m8 or -outfmt 6 option to NCBI BLAST), --fastapairs (pair-wise

alignments in FASTA format), --uc (tabbed format primarily designed for clustering results),

--consout (consensus sequences for clusters) and --userout (tabbed format with fields specified

by --userfields). For more details, see Output Files.

— 13 —

Search strategy
A central step in most USEARCH algorithms is to search a database, which is stored and

indexed in memory. For more details, see Searching. The following tables summarize the most

common ways in which a database can be constructed and searched. These variations are

explained in more detail later.

Database
Option Description

Search
The database is read from a FASTA file and does not change. This is done in a

typical search, which is specified if the --query and --db options are both given.

Clustering

The database is initially empty. Each new seed sequence is added to the

database, so the database contains one sequence per cluster. This strategy is

used if the --cluster option is given but not --db.

Search + clustering

The database, which contains cluster seed sequences, is initialized from a

FASTA file, and then grows as new seeds are identified. This strategy is used if

the --cluster and --db options are both given.

Search order
Option Description

U-sorted
Database is searched in order of decreasing number of words in common. This

is the default.

S-sorted

Modified U-sorted order. Designed to increase sensitivity by improving the

correlation of the search order with evolutionary distance. Specified by the

--[no]ssort option. Amino acid databases only. S-sorting is the default if the

--query and --evalue options are both given, otherwise it is disabled by default.

Entire database
All database sequences are tested. Specified by the --nousort option. In this

case, the --[no]ssort option is ignored.

— 14 —

Search termination (U-sorted or S-sorted only)
Option Description

Max accepts

Search stops after this number of accepts (matching targets) found. Set by

--maxaccepts option, default value is 1. Increasing this value tends to find a

better hit; if you do this you should generally also increase --maxrejects

otherwise rejections will often terminate the search before more accepts are

found.

Max rejects

Search stops after this number of failed attempts to match a target sequence. Set

by --maxrejects option, default value is 32. Increasing this value tends to

increase sensitivity and increase execution time.

Alignment
Feature Variants Description

Heuristic/optimal

Heuristic

By default, heuristics similar to those used in the

BLAST program are used to speed up calculation of

an alignment.

Optimal

Heuristics can be turned off using --nofastalign, in

which case the Needleman-Wunsch or Smith-

Waterman algorithms are used, i.e. full O(L
2
) dynamic

programming. This is often much slower, and gives

results similar to programs like SSEARCH and

NEEDLE. Optimal alignments can be useful for

benchmarking, e.g. to evaluate the effect of using

heuristics, and for ad hoc searches of small databases

where the best possible accuracy is desired; for such

applications USEARCH may be convenient due to its

ease of use, flexible options and rich set of output file

formats.

Global/local

Global

All letters of both sequences are aligned. This is the

default if --cluster is given, otherwise can be specified

using the --global option.

Local

Two segments (one substring from each sequence) are

aligned. This is the default if --query is used,

otherwise can be specified using the --local option.

— 15 —

Similarity measures
Variants Description

Identity

Fraction of columns in the alignment that contain identical letters. Minimum

identity is specified by the --id option, which ranges from 0.0 to 1.0, meaning

0% to 100% identity. Several different definitions of identity are supported, as

specified by the --iddef option. Can be used for both local and global

alignments.

E-value

Karlin-Altschul statistics are used to calculate bit scores and E-values. The

maximum E-value is specified by the --evalue option. Applies to local

alignments only.

Sequence coverage

Coverage is defined as the fraction of letters in one sequence that are aligned to

letters in the other. The minimum coverage is specified by the --queryfract and

--targetfract and options (range 0.0 to 1.0; default is 0.0, which effectively

disables the option). Can be used for local or global alignments. For local

alignments, --queryalnfract and --targetalnfract can also be used.

Word counting
Option Description

Word length

Short words of fixed length (k-mers) are used for two purposes: U-sorting and

seeding alignments (like in BLAST). The word length for U-sorting is set by the

--w option, which defaults to 5 for amino acids and 8 for nucleotides. The seed

word length is set by the --k option, which defaults to 3 for amino acids and 5

for nucleotides.

Word count rejection

By default, a target is rejected if it has too few words in common with the

query. This improves speed by eliminating the expensive alignment step, but

can result in some false negatives. In practice, this applies only to high identity

thresholds because at lower identities the required number of words in common

is one or zero. Word count rejection is disabled by --nowordcountreject.

Stepping

A subset of words in the query or target sequence may be used rather than all

words. This improves speed by reducing the time required to find those words

in the database. The subset is obtained by extracting words at intervals > 1 letter

(stepping). Specified by the --stepwords and --dbstep options. Default value of

--stepwords is 8, which means that the number of words extracted from the

query is chosen so that a target sequence with the required identity is expected

to have at least 8 of those words in common. The default for --dbstep is 1,

meaning that all target words are indexed. Increasing --dbstep saves memory,

but can reduce sensitivity at lower identity thresholds.

Bumping

This optimization reduces the time required for word counting and U-sorting in

cases where many target sequences exceed the initial word count rejection

threshold. Specified by the --bump option, which defaults to 50.

— 16 —

Sorting sequences for clustering
In most cases, sequences should be sorted prior to clustering. The order should be chosen so that

an appropriate seed sequence for a cluster tends to appear first, before other members of the

same cluster.

Don't sort if you're doing database search
There is no need to sort query sequences for database search, because no new seeds are created.

However, sorting is required for search and clustering in a single step (--cluster and --db options

both specified).

Sorting by decreasing length
Sorting by decreasing length is effective when full-length sequences and fragments are present in

the input. Fragments are usually not a good choice of seed, as shown by the following example.

 Seed: THESEED--------

 First hit: THESEEDINSERTED

 Second hit: THESEEDTERMINAL

Here the seed is a fragment. The two hits are both 100% matches to the seed except for terminal

gaps and would therefore be assigned to the same cluster. However, the hits are extended with

different terminal regions (red) and therefore have only about 50% identity to each other.

The --sort command sorts sequences by decreasing length.

 usearch --sort input.fasta --output input_sorted.fasta

The current implementation of --sort loads all sequences into memory for speed. Available

memory (real or virtual) must be at least as big as the input file. Larger sets can be sorted using a

slower merge sort, as in the following example.

 usearch --mergesort input.fasta --output input_sorted.fasta --split 500.0

The --split option (default 1000.0) specifies the number of megabytes to use for each partition of

the input file. Typically, the maximum memory needed for the sort will be a little more than this,

and in a worst-case scenario can be closer to 2x the --split value, so a conservative choice is to

use about half the physically available memory. Smaller values of --split tend to be slower.

Sorting by decreasing cluster size (abundance)
The --sortsize option sorts sequences according to a size= field in the label. Usage is:

usearch --sortsize input.fasta --output input_sorted.fasta [--minsize N]

If the --minsize N option is given, sequences with a size=n label with n < N are discarded. The

size=n field should be delimited by semi-colons. If it is the last field in the label, the trailing

semi-colon is optional.

— 17 —

Following are examples of valid labels with size fields.

>FQ12GCZ34;size=12;qual=0.85

>FQ12GCZ35;size=4

Sorting by decreasing abundance is can be a useful strategy as a step in denoising or for

identifying OTUs from single-region environmental sequencing reads such as 16S or ITS. The

most abundant sequence is likely to be a true biological sequence, while less common sequences

may be artifacts due to sequencing error or PCR artifacts such as chimeras, as illustrated in the

following figure. This shows the cluster for a single species; the red dot represents reads of the

true sequence of the species. A dot indicates a unique sequence, the size of the dot indicates its

abundance, i.e. the number of identical (or very similar) reads having that sequence. The longest

sequence in the figure is likely to be one of the outliers, and will give a less accurate OTU—

imagine drawing a circle of radius of size 97% around one of the outlying dots and you will see

that some reads that belong to the species will be incorrectly excluded. See later in this

documentation for further discussion of denoising and OTU identification.

3%

— 18 —

Searching
A fundamental step in most USEARCH algorithms is to search a sequence database. For

example, UCLUST searches a database of seeds to find a matching cluster for an input sequence.

Many different types of search can be specified via command-line options, allowing different

trade-offs between speed and sensitivity, local or global alignments, and so on. The typical steps

for a given query sequence are shown in the following flowchart.

Search order
Most sequence database search algorithms compare a query sequence with all database

sequences (targets). By default, USEARCH algorithms test database sequences in U-sorted order

and stop searching as soon as a strong enough hit ("accept") is found. This strategy is effective

because U-sort order correlates well with sequence similarity, so the first hit found is often the

best hit in the database, or one of the best. U-sorting can be disabled by specifying the --nousort

If U-sorted order is used, the search is
terminated if when a maximum
number of tests is reached
(--maxaccepts, --maxrejects and
--maxtargets options).

Select next target sequence
to test.

Align query and target.

Compute similarity
measure(s) (identity, E-

value...) from the alignment.

Test targets in U-sorted order (fast
search for good hit), or the entire
database (thorough search for all
hits).

Local or global alignment. Can use
fast heuristics, or a full dynamic
programming algorithm that guar-
antees a maximum alignment score
(usually much slower).

Accept or reject.

Usually the threshold is an E-value for
a local alignment or identity for a
global alignment.

Terminate
search? No

Yes

Done.

Accept if target has high enough
similarity, otherwise reject. If
clustering, assign query to the target
cluster. Accepts are reported in the
output file(s).

— 19 —

option, in which case all database sequences are aligned to the query and the target with the

highest similarity is selected.

Query-target comparison
A query is tested against (compared with) a target sequence by first creating an alignment, then

calculating a measure of similarity from the alignment. Many variants of these steps are

supported, e.g. alignments can be global or local, and the measure of similarity can be identity or

an E-value. The user can "mix and match" these variations as desired, e.g. the default for

clustering is to use global alignment with identity as a similarity measure, but clustering can also

be performed using local alignments with an E-value threshold.

Alignment parameters and heuristics
Given a pair of sequences (query and target), there are two sets of options that control the

construction of an alignment: scores and heuristics. Scores include the substitution matrix and

gap penalties. Changing scores will tend to change the optimal alignment of a given pair of

sequences. Heuristics are approximations that reduce the time required to calculate an alignment.

Ideally, changing the heuristic parameters or disabling the heuristics altogether would not change

the alignment. However, by definition heuristics do not always produce an alignment with the

best possible total score. They are introduced because they improve speed, at the expense of a

possible reduction in accuracy. Here, accuracy should be understood in a computer science rather

than a biological sense—the optimal alignment of a given pair of sequences may have biological

errors despite having the best possible score.

USEARCH with --nofastalign, i.e. with heuristics disabled, is roughly equivalent to programs

like SSEARCH and NEEDLE that are based on dynamic programming algorithms without

approximations. This can be useful for benchmarking USEARCH, e.g. to evaluate the effect of

using heuristics, and for searches with smaller datasets where maximum sensitivity is important.

Here, USEARCH may be convenient compared with some other programs due to its ease of use,

flexible options and its rich set of output file formats that are designed to be easily reviewed by a

human reader or robustly parsed by scripts.

Similarity measure
One or more measures of similarity are computed from a query-target alignment. For clustering,

the measure is usually identity computed from a global alignment. For database search, the

measure is usually an E-value computed from a local alignment.

— 20 —

Search termination
By default, the database is searched in U-sorted order, and a search is terminated when either (i)

a strong enough hit (accept) is found, or (ii) the maximum number of target sequences has been

tested. If U-sorting is disabled (--nousort), the entire database is searched, and any termination

options given on the command-line are ignored or cause an error.

Accepts and rejects
A target sequence that meets the threshold criteria is called an accept. Typically, this means the

target sequence has a high enough identity (clustering with global alignment), or a low enough

E-value (database search with local alignment). If the target sequence fails to match, it is called a

reject. If the weak similarity parameters --weak_id or --weak_evalue are used, then weak

matches are reported in the output files but do not count as accepts and will not cause a query to

be assigned to a cluster.

Termination conditions
The following conditions terminate a search. If any condition is satisfied, the search stops. In

other words, conditions are combined using a logical "OR".

Maximum accepts
Maximum number of accepts has been found. This is set by the --maxaccepts parameter, which

defaults to 1. In other words, by default, a search terminates immediately when the first hit is

found. If --maxaccepts is set to zero, there is no limit on the number of accepts (so zero means

infinity). Sometimes the first hit found is not the best hit in the database; increasing --maxaccepts

increases the probability that the best hit will be found, at the expense of slower execution time.

If --maxaccepts is increased, you should probably increase --maxrejects also.

Maximum rejects
Maximum number of rejections has occurred. This is set by the --maxrejects parameter (default

32). If --maxrejects is set to zero, there is no limit on the number of rejections, so the search will

continue until an accept is found or the entire database has been searched. Sometimes a hit is not

found because the search is terminated too quickly; increasing --maxrejects increases the

probability that a hit will be found, at the expense of slower execution time.

Search and clustering at high identities
At high identities, around 96% and above, compressed indexes are often more sensitive, faster

and use less RAM. Compressed indexes are disabled by default, so I generally recommend that

you specify the --slots and --w options when clustering at high identities.

The default termination parameters are --maxaccepts 1 --maxrejects 32. These are designed for

high-identity clustering, which is one of the most common USEARCH applications, and also

work well for database search when typical matches have high identity. When identity is high,

word count correlates well with similarity, which means that the first accept found is usually the

best, or close to it, and the probability of finding an accept falls rapidly with the number of

rejects. A U-sorted search therefore quickly reaches a point of diminishing returns if a match is

— 21 —

not found in the first few attempts, so --maxrejects values larger than 32 typically give only

small improvements in sensitivity.

Search and clustering at medium identities
When identity is lower, word count correlates less well with similarity, and sensitivity can

therefore often be improved by testing more database sequences. Medium identity means, very

roughly, 75% for nucleotides or 50% for proteins. Here, it may give better results to increase

--maxaccepts over the default value of 1 because at medium identities, the first hit found is less

likely to be the best hit and it may therefore be advantageous to test a few more targets. Typical

parameters that might work well for medium identity applications are:

 --maxaccepts 3 --maxrejects 128.

Search at low identities
When distant relationships are important, the default parameters will not work well because the

number of words in common correlates poorly with similarity below around 50% identity for

proteins or 80% for nucleotides. Clustering is rarely useful at such low identities, so this issue

applies mainly to searching without clustering. The reduction in sensitivity can be mitigated by

increasing the number of target sequences tested, which will be especially important when

searching large databases, which tend to produce many spurious candidates (rejections) when

tested in a U-sorted or S-sorted order. Some typical parameters are:

 --maxrejects 1024 --maxaccepts 8 --evalue 1e-6 --weak_evalue 0.01.

— 22 —

Output files
The USEARCH database search and clustering algorithms support several output file formats.

Most output file formats and features are supported by most of these algorithms.

Option Format Description

--uc UCLUST Tab-separated file designed primarily for clustering

pipelines but can also be useful for search. There is one

record for each input sequence giving its cluster

assignment, identity and alignment; and one record for each

cluster giving its size and average identity.

--blastout BLAST-like Verbose, human-readable format similar to BLAST.

--blast6out Tab-separated

Tabbed format with one record per hit. Compatible with the

-m8 or -outfmt 6 option of NCBI BLAST.

--userout Tab-separated Tabbed format with one record per hit, fields specified by

the --userfields option.

--seedsout FASTA Seed sequences, i.e. the non-redundant or reduced

redundancy set of sequences after clustering.

--consout FASTA Consensus sequence for each cluster. The consensus

sequence is computed by taking the majority letter from

each column in a multiple alignment of the cluster. If the

majority symbol is an internal gap, the column is discarded.

--fastapairs FASTA Pair-wise alignments in FASTA format.

The UCLUST file format
UCLUST format (.uc) is a tab-separated text file. UCLUST output is supported by clustering and

database search. Each line is either a comment (starts with #) or a record. Each query sequence

generates at least one record; additional record types give information about clusters. The cluster

number appears in every record type except R (reject). If an input sequence matched a target

sequence, then the alignment and the identity computed from that alignment are also provided. A

compressed representation of the alignment is used to save disk space. Records are appended to

the output file as they are generated in order to minimize memory use, and sequences therefore

appear in the same order as the input file.

— 23 —

Some example records in .uc format are show below.

Type Cluster Size %Id Strand Qlo Tlo Alignment Query Target

S 0 292 * * * * * AH70_12410 *

H 0 292 99.7 + 0 0 292M EN70_12566 AH70_12410

S 1 292 * * * * * EX70_12567 *

H 1 292 98.2 + 0 0 292M AH70_12410 EX70_12567

Each record has ten fields, separated by tabs, as described in the following table.

Field Name Description

1 Type See table below.

2 Cluster Cluster number

3 Size Sequence length or cluster size

4 Id Identity to the seed (as a percentage), or * if this is a seed.

5 Strand + (plus strand), - (minus strand), or . (for amino acids).

6 Qlo 0-based coordinate of alignment start in the query sequence.

7 Tlo 0-based coordinate of alignment start in target (seed) sequence. If minus strand,

Tlo is relative to start of reverse-complemented target.

8 Alignment Compressed representation of query-seed alignment, or * if a seed.

9 Query FASTA label of query sequence.

10 Target FASTA label of target (seed / library / database) sequence, or * if a seed.

Record types are as follows.

Type Description

S Seed.

H Hit, also known as an accept; i.e. a successful match.

C Cluster (seed is a sequence in the --cluster file).

D Library cluster (seed is a sequence in the --db file).

N Not matched.

R Reject (generated only if --output_rejects is specified).

L Library seed. There is exactly one L record for every --db sequence that has one or more hits.

Records of type C and D are used when clustering. The Size field contains the cluster size, i.e.

the number of sequences in the cluster including the seed, and Id is the average identity of non-

seed sequences to the seed. Otherwise, Size is the sequence length and Id is the identity of the

pair-wise alignment of this sequence to the seed. For Library clusters (D), records are only

output if Size > 1, i.e. library sequences with no matches are not output. A library seed record (L)

is output only if a hit is found to that database sequence. This saves writing a large number of

records for database sequences that are not matched, but means that cluster numbers in the .uc

file may not be consecutive (because UCLUST internally assigns a cluster number to every

library seed, whether or not it is matched).

— 24 —

Rejections (R) are sequences that were aligned to a seed but found to have an identity below the

threshold. Rejections are not output unless --output_rejects is specified. Rejection records can be

useful when trouble-shooting unexpected results.

The alignment is compressed using run-length encoding, as follows. Each column in the

alignment is classified as M, D or I.

Class Name Query Target

M Match Letter Letter

D Delete Letter Gap

I Insert Gap Letter

Here, "match" simply means a letter-letter column; the letters may or may not be identical.

Deletions and insertions are relative to the query. If there are n consecutive columns of type C,

this is represented as nC. For example, 123M is 123 consecutive matches. As a special case, if

n=1 then n is omitted. So for example, D5M2I3M represents an alignment of this form:

 Query sequence -XXXXXXXXXX

 Seed sequence XXXXXX--XXX

 Column type DMMMMMIIMMM

If a line in the output file starts with #, it is a comment and parser scripts should ignore it.

Records in the .uc file appear in the same order as the input sequences. You can sort the file by

cluster number using the standard Linux sort command, as follows:

sort -nk2 results.uc > results_sorted.uc

You can also sort by cluster number using USEARCH:

 usearch --sortuc results.uc --output results_sorted.uc

However, the current implementation reads the entire file into memory, so may fail for very large

sequence sets.

UCLUST to FASTA conversion
You can convert UCLUST to FASTA using the --uc2fasta or --uc2fastax commands.

usearch --uc2fasta results.uc --input seqs.fasta --output results.fasta

usearch --uc2fastax results.uc --input seqs.fasta --output results.fasta

Here, seqs.fasta must be the same input file used when generating results.uc.

The --uc2fasta command outputs sequences with the same labels and sequences as found in the

input file.

The --uc2fastax format reformats both labels and sequences when generating FASTA format

output. Labels look like this:

— 25 —

>43|99.7%|AH70_12410

Here, 43 is the cluster number and 99.7% is the identity to the seed. The identity will be shown

as * for the seed:

>43|*|AH70_12200

If a .uc record has an alignment, then the query sequence is re-formatted to indicate its pair-wise

alignment to the seed. Gaps indicate deletions relative to the seed, lower-case indicates insertions

relative to the seed. Here is an example:

>43|99.7%|TheSeed

SEQVENCE

>43|96.0%|NonSeed

S-QLENnCE

This represents the following pair-wise alignment:

TheSeed SEQVEN-CE

NonSeed S-QLENNCE

BLAST6 format
The --blast6out filename option specifies output that is compatible with the NCBI BLAST -m8

or -outfmt 6 options. It is a tab-separated text file with one line per global alignment, or one line

per HSP if local alignment is used. Only accepts and weak accepts are written; rejects are not

written. By convention I use the .b6 extension for files in this format. There are twelve fields, as

shown in the following table.

Field Description

1 Query label

2 Target label

3 Percent identity

4 Alignment length

5 Number of mismatches

6 Number of gap-opens

7 1-based position of start in query

8 1-based position of end in query

9 1-based position of start in target

10 1-based position of end in target

11 E-value

12 Bit score

BLAST-like alignment format
Alignments generated during clustering or database search can be saved in a human-readable

BLAST-like format by using the --blastout option, e.g.:

— 26 —

usearch --query seqs.fasta --db genes.fasta --blastout hits.blast

Since this format is rather verbose, the file size will be much larger than the corresponding .b6 or

.uc file. The details of the formatting are subject to change between versions. It is therefore

recommended that parsers use --userout or--blast6out. If full alignments are required, --fastpairs

can also be used, though see also the qrow and trow fields for --userout. An example --blastout

alignment is shown below.

Query 280aa >Q4HFD3_CAMCO

Target 337aa >A6CVA5_9VIBR

 1 LCLGVFGLISMELGVMGIIPLISEKFGVSVSDAGWSVSIFALIVMCCAPIAPMLCANFNPKKLM 64

 | | | : . | : ||:| :. :. ||: :| :|| :. || . | || | .:

 1 LTLAAFAIGTAEFIIAGILPQVATSLSITEGQAGYLISAYALAIVIGGPILTIYLARFNKKMVL 64

 65 LFCLAIFSLSSLASMFVNDFWLHLILRAIPAFFHPIYLALAFSTAANLADDKSKVPHIVAKIFM 128

 : :|:| . .| | | : : | | | : : | || :| | ..|

 65 IGLMALFIVGNLMSAFSPSYDILFISRIISGLVQGPFYGIGAVVATNLVSEKM-AGRAVGQMFA 127

129 AISAGLVLGVPLSSYFGGNFSFEMAMAFYVVINSLAFFITLFFMPEFKKTSRIKVGKQLLSLRY 192

 :. ||||| .: | | . .| | | . | || . :

128 GLTLANVLGVPGGTWIGVEFGWHTTFIVVAAFGVVALFAILAAIHSTGHGEAKNVKAQLAAFKN 191

193 ALLWISMLAVFCISTGYLGFYSYYSEFLFSVSKMSFTNISLALFIYGFASIIGNNIAGKTLVNH 256

 | ||: : ||:: | | . |. . :. | | | |||| : | .

192 PKLLISLAITAVVWTGFMTLYGYIAPIAMHVAGYGESAVTWILVIVGLGLIIGNTLGGHSSDKD 255

257 SNQTLIFASIAMILIYALIFV 277

 |.. :| .|||| |: |

256 LNKSSLFWAIAMIASLVLVGV 276

277 cols, 69 ids (24.9%), 207 diffs (74.7%), 1 gaps (0.4%)

Score 256.0 (103.2 bits), Evalue 9.1e-023

FASTA alignment format
Alignments can be saved in FASTA format by using the --fastapairs option, e.g.:

usearch --query seqs.fasta --db greengenes.fasta --fastapairs hits.fasta

The query sequence is first, the target (seed, database) sequence is second. If the input sequences

are nucleotides, then a + or – is appended to the label of the target sequence to indicate the

strand. If the strand is – (reverse strand match), then the target sequence is reverse-

complemented.

— 27 —

CD-HIT format
The CD-HIT .clstr format is supported for the benefit of code already written for that format.

You can convert UCLUST format to and from .clstr as follows:

 usearch --uc2clstr results.uc --output results.clstr

 usearch --clstr2uc results.clstr --output results.uc

User-defined output
Tabbed output in a user-defined format is produced by using the --userout and --userfields

options. For example,

usearch --query query.fasta --db db.fasta --userout results.user

 --userfields query+target+evalue

The --userout option specifies the filename, and the --userfields option specifies one or more

field names separated by +.

The output file is tab-separated. The first line contains the field names as specified by the

--userfields option; each subsequent line contains one hit. Fields are output in the order given by

--userfields. An example output file produced by --userfields query+target+evalue is as follows:

query target evalue

FQ76998 PF01023 1.2e-12

AZT77876 PF10922 6.7e-23

 ...etc...

Supported user fields are described in the following table.

User field Description

query Query sequence label.

target Target (database, seed) sequence label.

evalue E-value computed using Karlin-Altschul statistics.

id %id as reported in other output files, i.e. calculated according to the --iddef option.

id0 %id as if --iddef 0 was specified.

id1 %id as if --iddef 1 was specified.

id2 %id as if --iddef 2 was specified.

id3 %id as if --iddef 3 was specified.

id4 %id as if --iddef 4 was specified.

pctpv % alignment columns that contain a pair of letters with score > 0 per the

substitution matrix.

pctpvz % alignment columns that contain a pair of letters with score >= 0 per the

— 28 —

User field Description

substitution matrix.

pctgaps % alignment columns that contain a gap.

pairs Number of alignment columns containing a pair of letters.

gaps Number of alignment columns that contain a gap.

ids Number of identities (matches).

mism Number of mismatches.

ins Number of alignment columns that contain an insertion (gap in query).

del Number of alignment columns that contain a deletion (gap in target).

intgaps Number of internal gaps.

tgaps Number of terminal gaps.

ltgaps Number of terminal gaps at the left of the alignment.

rtgaps Number of terminal gaps at the right of the alignment.

qlo Start coordinate in query (one-based relative to start of sequence).

qhi End coordinate in query (one-based relative to start of sequence).

tlo Start coordinate in target (one-based relative to start of sequence or reverse-

complemented sequence).

thi End coordinate in target (one-based relative to start of sequence or reverse-

complemented sequence).

qloz Start coordinate in query (zero-based relative to start of sequence).

qhiz End coordinate in query (zero-based relative to start of sequence).

tloz Start coordinate in target (zero-based relative to start of sequence or reverse-

complemented sequence).

thiz End coordinate in target (zero-based relative to start of sequence or reverse-

complemented sequence).

pv Number of alignment columns that contain a pair of letters with score > 0 per the

substitution matrix.

pvz Number of alignment columns that contain a pair of letters with score >= 0 per the

substitution matrix.

ql Full length of query sequence.

tl Full length of target sequence.

qs Length of query segment appearing in the alignment.

ts Length of target segment appearing in the alignment.

— 29 —

User field Description

cols Number of alignment columns.

intcols Internal columns, i.e. number of columns that are not terminal gaps.

opens Number of gap opens.

exts Number of gap extensions.

qi Query sequence index, i.e. the zero-based number 0, 1, 2... of the sequence in the

query file.

ti Target sequence index, i.e. the zero-based number 0, 1, 2... of the sequence in the

database.

raw Raw score = sum of substitution scores minus gap penalties.

bits Bit score computed from the raw score using Karlin-Altschul statistics.

strand Strand: one letter '+' (forward strand), '-' (backward strand), or '.' for amino acid

sequences.

frame Signed integer -3, -2, -1, +1, +2 or +3 indicating the frame. For translated searches

only, otherwise appears as ".".

aln Alignment, coded as a string with one letter for each column: M is a pair of letters,

D is a delete (gap in target), I is insert (gap in query).

caln Alignment compressed using run-length encoding, exactly as in the .uc file format.

qrow Query alignment row, i.e. the aligned segment of the query sequence with gap

characters '-' inserted as appropriate.

trow Target alignment row, i.e. the aligned segment of the target sequence with gap

characters '-' inserted as appropriate.

— 30 —

Saving indexes to disk saves time and memory
Database indexes can be saved to disk. This requires an extra step to build an index, but gives

faster database load times and uses less memory, so can be useful when a database will be used

repeatedly.

UDB and WDB indexes
There are two index file formats: UDB and WDB. In future, these will be consolidated into a

single format. So please note that command-lines and disk files for this version may not be

forwards compatible with later versions.

Why use an index?
1. UDB indexes enable a sensitive protein search algorithm that is not supported with FASTA

databases.

2. UDB and WDB indexes require less memory and have faster load times than FASTA

databases.

3. UDB indexes support multi-threading, which can give significant speed improvements on

multi-core processors.

Why use a FASTA database?
FASTA databases are convenient for ad hoc searches of smaller databases that will only be run

once or a few times. Using FASTA saves the extra step of building an index. In the current

version, priority searching ("U-sorting" with the --usort option) is not supported with UDB

indexes, so FASTA is required for this type of search.

Creating a UDB database
A UDB database is created by the following command.

usearch --makeudb db.fasta --output db.udb [--notrunclabels]

The size of the UDB file is roughly 4× the FASTA file, and the memory required to build the

index is typically between 4× and 10× the FASTA file. This means that a 32-bit binary can build

an index for a database of size in the range ~200Mb to 500Mb.

By default, labels are truncated at the first white space. This is recommended if the database has

long labels as this can save significant memory in some cases, e.g. with the NCBI NR database,

which has very long annotations for many sequences. To keep full labels, use the --notrunclabels

option.

Searching a UDB database
A typical search is run like this.

usearch --query q.fasta --udb db.udb --evalue 10 --blast6out out.b6 --accel 0.5

— 31 —

All the usual output options are supported (--blast6out, --blastout, --userout, --fastapairs, --uc),

and most accept / reject criteria are supported (--evalue, --id, --queryfract, --targetfract,

--queryalnfract, --targetalnfract etc.).

The entire database is always searched, so database sort order and reject options are ignored

(--[no]usort, --[no]ssort, --maxaccept, --maxreject, --[no]wordcountreject).

The UDB --accel parameter
The --accel command-line parameter enables the user to choose a trade-off between speed and

sensitivity. A value of 1.0 gives maximum sensitivity and slowest speed (typically around 20×

faster than BLASTX). A value of 0.5 is usually significantly faster than RAPsearch v2.01, with

similar sensitivity. A value of 0.35 typically gives speeds ~200× faster than BLASTX with

sensitivity good enough for many applications. Default is 0.8. For details of my benchmark tests

and results, see http://drive5.com/usearch/perf.

The UDB --threads parameter
Two or more execution threads can share a single UDB index loaded into memory. The

--threads n parameter specifies the number of threads. Default is 1. Multi-threading is currently

supported only with UDB indexes. Future versions will support multi-threading with FASTA

and WDB indexes. With N threads, the speed improvement may be up to N×, depending on

hardware characteristics such as RAM speed and cache size. If the processor has K cores, it is

generally recommended to run ≤K threads. Running more than K threads usually results in

slower overall execution.

Splitting large UDB databases no longer required
In version 5.0 of usearch, there was a limit on the maximum size of a UDB index, which

required splitting large databases. This restriction is removed in v5.1.

Creating a WDB database
A UDB database is created by the following command.

usearch --makewdb db.fasta --output db.wdb [--notrunclabels]

The size of the UDB file is roughly 5× the FASTA file, and the memory required to build the

index is typically between 6× and 10× the FASTA file. This means that a 32-bit binary can build

an index for a database of size in the range ~200Mb to 500Mb.

You can use the --slots option to create a compressed WDB index.

Searching a WDB database
A typical search is run like this.

usearch --query q.fasta --wdb db.wdb --evalue 10 --blast6out out.b6

http://drive5.com/usearch/perf

— 32 —

All the usual output options are supported (--blast6out, --blastout, --userout, --fastapairs, --uc),

and most accept / reject criteria are supported (--evalue, --id, --queryfract, --targetfract,

--queryalnfract, --targetalnfract etc.).

Searches can be run with or without priority searching, so --usort (the default) and --nousort are

both supported.

— 33 —

Compressed indexes save memory
The default database index constructed by USEARCH requires a relatively large amount of

memory, typically between 5× and 10× the size of a FASTA file containing the database

sequences. In some situations, this can exceed the amount of installed RAM.

USEARCH also offers a compressed index option which can save a substantial amount of

memory. For high-identity search or clustering, say at around 95% identity or above, compressed

indexes can also be more sensitive and give faster execution times. A compressed index is used

if the --slots option is given.

A compressed index uses a table with a fixed number of slots (--slots slots option). For the best

possible performance, the number of slots should be set to a prime number. Using non-primes

probably doesn't make much difference, but so far I haven't attempted to measure whether it

matters or not so safest is to use a prime. You can use this web page to find a prime number close

to a given integer: http://www.rsok.com/~jrm/printprimes.html.

Suggested parameter settings
For the best possible trade-off between sensitivity and memory use, the value of the w and slots

parameters should be chosen based on the identity threshold and database size, as explained

below. However, the values shown in the table below should be effective for typical nucleotide

data. Bits refers to the usearch binary build (32- or 64-bit), Seq. length means the length of a

typical short sequence, and Database is the database size in bytes.

Bits Seq. length Database --id --w --slots RAM

32 100 – 1000 ≤ 1 Gb 0.97 – 0.99 32 40000003 (4×10
7
+3) ≤ 1.3 Gb

32 100 – 1000 ≤ 1 Gb 0.90 – 0.96 16 40000003 (4×10
7
+3) ≤ 1.3 Gb

64 100 – 1000 ≤ 10 Gb 0.97 – 0.99 32 400000009 (4×10
8
+9) ≤ 13 Gb

64 100 – 1000 ≤ 10 Gb 0.90 – 0.96 16 400000009 (4×10
8
+9) ≤ 13 Gb

64 100 - 1000 ≤ 32 Gb 0.97 – 0.99 32 1000000007 (10
9
+7) ≤ 40 Gb

64 100 - 1000 ≤ 32 Gb 0.90 – 0.96 16 1000000007 (10
9
+7) ≤ 40 Gb

Choosing the best word length
A compressed index supports arbitrarily long word lengths (--w w option) in a fixed-size region

of memory as specified by the --slots parameter, while the standard index requires memory that

scales like A
w
 where A is the alphabet size, and therefore can support only short words in a

reasonable amount of RAM. Long words can be effective at high identities, where similar

sequences often have many shorter words in common but fall below the identity threshold.

In the case of clustering, the database size may not be known in advance, in which case a worst-

case estimate should be made of the largest likely size. The word length should be approximately

equal to the longest exact word match expected based on the query length and identity threshold.

For example, if the shortest query sequences are ~100 letters and the identity threshold is 99%,

then we expect an exact word match of at least 50 letters and we would set --w 50.

http://www.rsok.com/~jrm/printprimes.html

— 34 —

 In general, an estimate of the word length can be made as follows:

 d = (1 – t) L

 w = L / (d + 1)

Here, L is a typical short query sequence length, t is the clustering threshold (--id option) and d is

the maximum number of differences (substitutions and gapped positions). For example, if t=0.97

and L=250, we find d=7.5 and w=29.4, so a reasonable choice would be --w 30.

This estimate of the word length is quite conservative, and there is usually only a small loss in

sensitivity using a larger value, say up to 2× larger than the estimate above, which can be useful

if further savings in memory are needed.

Setting the best table size
An estimate of the minimum number of slots to use is:

 slots = D / w

Here, D is the number of letters in the database and w is the word length. So, for example, if the

database is a 1Gb FASTA file and w=30, we find slots=10
9
 / 30 = 3.3×10

7
.

If there is enough memory, it is better to use larger values of slots. See next for how to estimate

the total memory requirement.

Memory requirements for a compressed index
The amount of memory needed for the index can be estimated as follows:

 bytes RAM needed for index = 8 × slots + D

So for our example of a 1Gb database file, the total memory is:

 8 × slots + D = 8 × 3.3×10
7
 + 10

9
 = 1.2 Gb.

This is substantially less than the ~10 Gb that would be needed with an uncompressed index.

— 35 —

Dereplication: discarding identical sequences
Dereplication is the process of discarding sequences that are identical, leaving exactly one copy

of each unique sequence. Dereplication can be defined in two different ways: (i) two sequences

are identical over their full length, or (ii) one full-length sequence is a substring of another

sequence. It is useful to consider these separately because more efficient algorithms are possible

for finding full-length matches. It is harder to find identical substrings than identical full-length

sequences.

WARNING
For nucleotides, matching is done on the plus strand only. You cannot use the --rev option with

--derep_fullseq or --derep_subseq. If you need reverse strand matches, you can use --cluster --rev

--iddef 1 --id 1.0.

Dereplication of full-length identical sequences
Full-length dereplication is specified by the --derep_fullseq option of the --cluster command. It is

important to sort by decreasing length first. For example:

usearch --sort reads.fa --output reads.sorted.fa

usearch --derep_fullseq --cluster reads.sorted.fa --seedsout unique.fa

 [--uc results.uc] [--sizeout] [--minsize n] [--slots n] [--w wordlength]

The --sizeout option causes the cluster size to be included in the label. By default, the label is

>ClusterN, where N is 0, 1, 2... etc. If the --sizeout option is given, the label is >ClusterN;size=M

where M is the number of identical sequences in the cluster, which will be ≥ 1.

The --uc option specifies a UCLUST format output file. This is useful if you need to know which

pairs of sequences were matched.

The --minsize n option specifies the minimum size of a cluster. If fewer than n identical

sequences are found, the cluster is discarded. By default, --minsize is set to zero, which means

that this option is ignored.

The --slots n option specifies the number of table slots to allocate. Default is 1000003=10
6
+3,

which is the first prime number >10
6
. This number of slots should be prime and for best

performance should be greater than N, the number of unique sequences in the input; preferably at

least 2N.

Finding a prime number
You can use this web page to find a prime number close to a given integer:

http://www.rsok.com/~jrm/printprimes.html.

Fast dereplication for huge datasets
The --bithash option provides a very fast option for full-length dereplication of large datasets, at

the expense of possible false positives. The amount of memory needed is also usually much

smaller. Typical usage is:

http://www.rsok.com/~jrm/printprimes.html

— 36 —

usearch --bithash --derep_fullseq --cluster reads.sorted.fa --seedsout unique.fa

For very large datasets, the --mergesort command can be used if --sort runs out of memory.

The --bithash option creates a hash table with 8K slots, where K < 2×10
9
. The value of K can be

changed using the --slots option. By default, K=1000000007=10
9
+7, which is the first prime

number >10
9
. The bithash algorithm saves time and memory by assuming that two sequences

with the same hash value are identical, which is not guaranteed to be true. A failure of this

assumption causes a false positive. A false positive is a sequence that is unique in the input set,

but is incorrectly discarded because it has the same hash value as a different sequence by chance.

False positives will be minimized if K is much larger than the number of unique sequences in the

input.

The amount of memory needed to store the table is K bytes, so is 1 Gb by default.

The --uc, --sizeout and --minsize options are not supported if --bithash is used.

You can measure the number of false positives for benchmarking purposes by comparing the

number of unique sequences generated with and without the --bithash option.

Dereplication of identical sub-sequences
Subsequence dereplication uses the --derep_subseq option of the --cluster command. Most of the

usual options for clustering can be used, with obvious exceptions: e.g., --local and --evalue are

not supported. It is important to sort by decreasing length prior to dereplication. For example:

usearch --sort reads.fa --output reads.sorted.fa

usearch --derep_subseq --cluster reads.sorted.fa --seedsout unique.fa \

 --slots 40000003 --minlen 64 --w 64 [--sizein] [--sizeout]

The --sizeout option appends size=M to the seed label in the --seedsout file, where M is the size

of the cluster. If the --sizein option is also specified, the cluster size will be the sum of sizes

specified in labels in the members of that cluster. This enables sizes to be accumulated over

multiple clustering steps, e.g. using --derep_fullseq followed by --derep_subseq. This will

produce equivalent results to a single --derep_subseq step, but may be more efficient. For

example:

usearch --sort reads.fa --output reads.sorted.fa

usearch --derep_fullseq reads.sorted.fa --seedsout full.fa --sizeout

usearch --derep_subset full.fa --seedsout sub.fa --sizein --sizeout \

 --slots 1046527 --minlen 64 --w 32

Since the results are equivalent, there is no reason to use --derep_fullseq as a preprocessing step

unless you find that using --derep_subseq directly on your input set is computationally expensive

and you will be repeating these processing steps repeatedly with new data.

It is generally recommended to use --minlen and a compressed index (--slots option) with

--derep_subseq.

— 37 —

Denoising: correcting sequencer error
Denoising is the process of correcting errors in reads from next-generation sequencing

technologies, including Roche 454 and Illumina.

Denoising support in USEARCH is a work in progress
In this section, I will offer some suggestions, but these have not been well tested. I would like to

provide more definitive solutions, but this is challenging for the following reasons (excuses):

 I don't know very much about these sequencers. If someone helps me understand the

issues better, I may be able to offer better advice and provide appropriate new features in

USEARCH.

 Denoising is a moving target as sequencing technologies change. A solution that works

with well with one sequencer may not work so well with the next version of the hardware

or with a sequencer from a different manufacturer.

When can you denoise by clustering?
Denoising can be accomplished by clustering when these conditions hold:

 Several reads will cover the same biological sequence, and

 Reads of one biological sequence are approximately globally alignable.

This conditions hold when sequences start from a fixed primer, as in single-region environmental

sequencing experiments using the 16S rRNA gene or the fungal ITS region. It may also be true

in other situations; I am not clear about this.

I would not expect these conditions to hold for shotgun sequencing, unless the sequencing

machines generate several reads for each fragment (this is one of those things that I'm not clear

about). With shotgun, you usually have to make contigs from fragments that overlap locally

rather than globally. Denoising is then an assembler problem, as far as I know.

Using a consensus sequence
If reads are approximately globally alignable to one biological sequence, then a multiple

alignment of a biological sequence to its reads will look something like this. Read errors are

highlighted.

G A T G A C G T C A - A G T C A T A G G Biological sequence
G A T T A C G T C A - A G T C A A A G G Read 1
G A T G A C G A C A - A G T C A T A G - Read 2
G G T G A C G T C A A A G - C A T A G G Read 3

— 38 —

The biological sequence can be estimated as the consensus sequence derived from the multiple

alignment. In each column of the alignment, the most common letter is taken. If the column

contains a gap, the column is discarded. In this example, the biological sequence is recovered

correctly. In general, there might be some remaining errors but we expect the consensus

sequence to be closer than the longest read or a randomly chosen read from the cluster.

The --consout option for cluster consensus sequences
The --consout option of the --cluster command constructs a consensus sequence by computing a

multiple alignment of the cluster members. The method used is very fast compared with

conventional multiple alignment methods like MUSCLE, so adds very little overhead in terms of

execution time. Some additional memory is required, but this is typically not much more than

around 20% in the case of nucleotides (more for amino acid sequences).

Strategy for denoising by clustering
Denoising by consensus sequence can be accomplished using the following steps.

1. Quality filter. Discard reads with unacceptably low average quality, and remove low-

quality positions at the beginning or end of a read.

2. Create clusters in an attempt to bring together reads of the same biological sequence.

3. Create a multiple alignment of each cluster.

4. Extract a consensus sequence for each cluster.

5. Filter consensus sequences for chimeras, if appropriate.

Quality filtering must be done as a preprocessing step. Steps 2, 3, 4 and 5 can be done with

USEARCH. I am not sure what parameters to recommend, but I would suggest something like

the following.

Cluster at an identity threshold which corresponds to ~2× the expected maximum number of read

errors. For example, suppose the average read error rate after quality filtering is believed to be

around 1%. Then we might expect reads to contain up to 2% errors, allowing for some that have

more errors than the average. A reasonable clustering threshold would then be 96% identity (4%

difference), because the seed sequence might be 2% diverged from the correct sequence, and

other cluster members may be diverged 2% at some other positions, for a total distance of 4%

between the seed and the other cluster members. Use the --consout option in the final clustering

step to generate the estimated biological sequences. Note that --consout uses size= fields in the

sequence labels, if present, when computing the consensus sequences, providing that you specify

the --sizein option. This ensures that the true number of observations (the underlying number of

reads) is used to calculate the majority vote in each column if you use multiple clustering steps

such as dereplication followed by clustering. Typical commands might be as follows.

http://drive5.com/muscle

— 39 —

Warning
I do not necessarily recommend using parameters such as the clustering threshold from this

example because I am not familiar enough with the issues. You should choose parameters based

on your best understanding of the sequencing technology.

usearch --sort reads.fa --output reads.sorted.fa

usearch --cluster reads.sorted.fa --id 0.96 --consout denoised.fa \

 --minlen 64 --w 20 --slots 16769023 --leftjust --idprefix 5 --minsize 4

Using --leftjust and --idprefix is recommended if the reads are expected to start from a fixed

location in the biological sequence, such as an exact match to a primer sequence. This usually

improves both speed and sensitivity.

Replacing CD-HIT-454 with USEARCH
The cd-hit software suite has a program cd-hit-454 designed to identify "natural and artificial

duplicates from pyrosequencing reads" (I'm not clear exactly what that means), and a web server

that uses CLUSTALW to construct consensus sequences from clusters found by the cd-hit-454

program. I don't really understand the motivation for the design of this program or web server,

but I can recommend options for usearch that work in a similar way to cd-hit-454, but are

significantly faster, smaller and more sensitive. Typical usage is:

usearch --sort reads.fa --output reads.sorted.fa

usearch --cluster reads.sorted.fa --id 0.96 --leftjust --idprefix 5 \

 --w 32 --slots 16769023 --seedsout seeds.fa --consout cons.fa

The seeds.fa file will contain the seed sequences, equivalent to those produced by the stand-alone

cd-hit-454, and the cons.fa file will contain consensus sequences, similar to those produced by

the web server. The clustering threshold --id 0.96 should be adjusted if needed according to the

expected error rate after your quality filtering (the equivalent parameter in cd-hit-454 is -c, which

defaults to 0.98). The --maxqgap and --maxtgap options to usearch provide similar functionality

to the -D option of cd-hit-454.

Using the --minsize option to discard small clusters
The smallest clusters of reads, e.g. singletons, are likely to be sequencing artifacts. The --minsize

option sets the minimum size of a cluster that will be output to the --seedsout or --consout file.

Chimera detection in single-region reads
For single-region experiments such as 16S and ITS, it is important to filter for chimeric

sequences formed during the PCR amplification stage that is generally used prior to sequencing.

In most such experiments, a substantial fraction of the unique sequences in the set of amplicons

is chimeric. I would generally recommend denoising first, then using UCHIME to filter for

chimeras. A fast version of UCHIME is implemented in USEARCH; usage is described in the

separate UCHIME manual.

— 40 —

Amplicon and abundance estimation for UCHIME de novo mode
The de novo mode of UCHIME requires an input file that contains a set of estimated amplicon

sequences with their abundances annotated using the size= attribute in the label, e.g.:

>FQ56TRV12;size=14

A reasonable method for computing abundance is to sum the number of raw reads corresponding

to the estimated sequence, i.e. the total number of reads in the cluster (or hierarchy of clusters)

for the sequence.

Warning
It is important that the reads come from one sequencer run (strictly, one PCR step), otherwise

abundances may not be directly comparable.

Estimating amplicon sequences and abundances is a denoising problem, and I recommend that

you read the previous section on denoising for more background. It is an open research problem

to determine the best strategy for amplicon and abundance estimation. One challenge is that it is

often a goal to determine operational taxonomic units (OTUs) by clustering at a threshold chosen

to approximate species, typically 97%. In this case, clustering at 96% or lower may not be

appropriate because multiple species could be merged during the denoising process. It might then

be more effective to use a threshold of, say, 99% or 98% and extract consensus sequences like

this:

usearch --cluster reads.sorted.fa --id 0.98 --consout denoised.fa --sizeout \

 --minlen 64 --w 20 --slots 16769023 --minsize 4

If you use the --sizeout option, then the denoised.fa file is suitable for input to UCHIME de novo

mode. However, as noted, it is an open research problem to determine the most effective

procedure for estimating amplicons.

— 41 —

OTU identification using USEARCH
The otupipe script is provided for identifying OTUs using USEARCH.

http://drive5.com/otupipe/

— 42 —

UBLASTX: Translated ORF search
UBLAST supports translated searches of nucleotide sequences against a protein database

containing amino acid sequences. This is somewhat similar to BLASTX, except that ORFs are

used as queries. This makes more effective use of the U-sort and S-sort heuristics.

For larger databases, I recommend using a udb index for translated search.

Frame-shifts
The current UBLASTX implementation does not allow frame-shifts within an alignment.

However, frame-shifts can be inferred from hits to ORFs in different frames on the same strand.

ORF identification
An ORF begins at the start of the sequence or with a START codon (ATG), and ends at a STOP

codon (TAA, TAG or TGA) or the end of the sequence. Please let me know if you would like

support for non-standard genetic codes. The minimum number of amino acids in the ORF is set

by the --mincodons option (default 20).

The --orfstyle option controls how ORFs are defined. The value is created by adding up the

following integers.

Value Description

1 Allow an ORF to start at the beginning of a sequence, even if this is not a START

codon (default cannot start before the first START codon).

2 Allow an ORF to start immediately following a STOP codon (default cannot start before

the first START following a STOP).

4 Allow an ORF to end at the end of the nucleotide sequence (default must be terminated

by a STOP codon).

8 Include the terminating STOP codon, if any, in the translated sequence (default do not

include the STOP).

Default is --orfstyle 1+4=5, which is appropriate for shotgun metagenomic reads that may only

partially cover a gene.

Search and output
The translated amino acid sequence for each ORF is used as a query sequence to search the

target database. The --maxrejects option is especially important here if the database is large and /

or if low-identity matches are designed, typically you will need to specify a larger value of

--maxrejects (say, 100 or 1000) to achieve good sensitivity with low-identity proteins.

mailto:robert@drive5.com?subject=Non-standard%20genetic%20code%20in%20USEARCH

— 43 —

UHIRE: hierarchical clustering, clumping and large multiple alignments
The --uhire command performs hierarchical clustering with the goal of generating clusters of

approximately a predetermined size (clumps). Sequences within a clump should be more similar

to each other than to sequences in other clumps. This is intended to reduce the dataset size to be

tractable for more expensive algorithms, such as multiple alignments. Basic usage is as follows.

usearch --uhire reads.sorted.fasta --hireout results.hire

 --clumpout results.clump --clumpfasta filenameprefix --maxclump 1000

 --ids id1,id2...,idN

At least one output option must be given, i.e. at least one of --hireout, --clumpout or

--clumpfasta. The --maxclump option gives the maximum number of sequences in a clump

(default 1000). The --ids option gives the percent identities of each level in the hierarchy. The

default is 99,98,95,90,85,80,70,50,35. Note that --ids uses percentages (0 to 100), unlike --id

which uses fractional identities (0.0 to 1.0). Values are separated by commas. Since commas are

significant to most command shells, the value of the --ids argument should usually be quoted. If

the --clumpfasta option is given, each clump is written to a file named clump.0, clump.1,

clump.2 etc., prefixed by the --filenameprefix option. This will typically be a directory name.

E.g., you might do this:

 usearch --uhire reads.sorted.fasta --clumpfasta myclumpdir/ --maxclump 256

Note the '/' at the end of the prefix. This is not required, but if present specifies that clump files

are to be stored in the given directory, which must exist. Sequences for each clump will be stored

in these files:

 myclumpdir/clump.0

 myclumpdir/clump.1

 ..etc..

In addition to the clumps, a file named 'master' will also be written. This contains the longest

sequence in each clump. It can be used for creating large multiple alignments, as explained

shortly below.

Warning
This method was primarily designed to support clumping (see below). Clusters at levels below

the first (highest identity) level will tend to be more diverse than clusters obtained in a single

step. Say the first two levels are 99% and 98%. The 98% step uses seeds from the 99% step as

input. Suppose a cluster at 99% includes two sequences S and A where S is the seed and A is

another sequence such that pctid(A,S) ≥ 99%. A is discarded when the 98% clustering is done.

Now suppose T is the seed at 98%, so pctid(S,T) ≥ 98%. There is no guarantee that A has ≥ 98%

id with T, it may be less, and in fact we should expect such cases because A can be 'further' from

T than S is. So clustering all sequences including A at 98% will tend to give different numbers of

clusters than the hierarchical method.

— 44 —

The .hire file format
The .hire format is designed to be easily parsed by a scripting language and to avoid very long

lines as found in mothur files. If you would like a script to convert .hire to mothur format, please

let me know.

A .hire file is a text file.

The first line is the number of levels (K), i.e. the number of ids specified in the --ids option.

The second line is the number of sequences (N).

The following N lines specify sequences. Each line contains three tab-separated fields, for

example:

37261 167 GF2FOAC01BL6E9

The first field is the sequence ID, an integer 0, 1 ... (N-1). This is redundant, but should be used

by parsers to check that they are in synch with the file.

The second field is the sequence length in letters.

The third field is the sequence label from the FASTA file.

Following the last sequence (ID=N-1) will be K levels. Each level is specified as follows.

The first line in a LEVEL is a record with four fields, for example:

LEVEL 6 9 70.0

The first field is always the text "LEVEL". The remaining fields are:

6 Level number, a zero-based level number 0, 1 ... K-1.

9 Number of input sequences at this level.

70.0 Percent identity for this level.

This is followed by one line per sequence. Each line has three fields. Here is a complete example

of a level.

LEVEL 6 9 70.0

6 0 *

6 61 *

6 565 0

6 726 *

6 1542 *

6 4408 61

6 4858 0

6 4879 *

6 9366 *

http://www.mothur.org/

— 45 —

In the lines following the LEVEL record, the first field is the level number. This field is also

redundant, but should be used by parsers to verify consistency with the file. The second field is

the sequence ID, referring back to the sequence records at the beginning of the file. Sequence

IDs are the same for all levels. A given level will have only the subset of IDs that correspond to

seeds discovered in the previous level. The third field is either a second sequence ID, indicating a

match, or an asterisk '*', indicating no match. A match means that the sequence was assigned to a

cluster, an asterisk means that this sequence becomes a new seed at this level. So the above

example has six seeds that would be passed down to the next level and three matches, two to

seed ID=0 and one to seed ID=61. If there is a 7th level, it will have six input sequences which

are the seeds identified at level 6.

Large multiple alignments
MUSCLE can create alignments of up to perhaps 10,000 to 20,000 sequences, depending on the

available memory and sequence lengths. Larger sets can be aligned using a divide and conquer

strategy based on clumping. This may be advantageous even in cases where MUSCLE can align

the complete set as the resulting alignments tend to be more compact, having fewer columns and

thus fewer gaps, which may be preferred for some types of analysis.

In outline, the strategy is as follows.

 1. Create clumps, i.e. clusters that are small enough for MUSCLE to align.

 2. Create a 'master' set containing the longest sequence from each clump.

 3. Align each clump.

 4. Align the master set.

 5. Merge the clumps into a final alignment, using the master alignment as a guide.

The first step is to create clumps. Anecdotally, I have found that a clump size of around 5000

gives good results, but this may vary depending on your data. I recommend experimenting with

different clump sizes and examining the results. Typical commands would be:

 mkdir myclumpdir

 usearch --uhire seqs.sorted.fasta --clumpfasta myclumpdir/ --maxclump 5000

The clumps and the master set are then aligned using MUSCLE. For example (bash syntax):

 mkdir clumpalns

 cd myclumpdir

 for filename in clump.* master

 do

 muscle -in $filename -out ../clumpalns/$filename -maxiters 2

 done

 cd ..

I recommend the -maxiters 2 option to MUSCLE as a good compromise between speed and

accuracy for larger sets. Any multiple alignment method can be used in place of MUSCLE if

desired.

The alignments are combined using the --mergeclumps command, as follows.

http://drive5.com/muscle

— 46 —

 usearch --mergeclumps clumpalns/ --output aligned.fasta

Sequences in the master file are required to have their labels formatted to indicate the clump

number. This is done automatically if the --clumpfasta option is used; if you use some other

method to select the master set then you must take care to follow the label formatting

convention. The clump ID (0, 1... N-1) is indicated by a prefix like >M123| where 123 is the

clump ID. For example, this is a valid FASTA label for the master sequence of clump 28:

>M28|GF2FOAC01AU7TA

Clump 28 must contain an identical sequence with label >GF2FOAC01AU7TA, this

correspondence is used to merge the alignments of each clump into a single multiple alignment.

— 47 —

Parameter tuning
Where possible, I recommended that you tune parameters to obtain a good trade-off between

speed and sensitivity. Following are some suggestions for how this can be achieved.

Improved sensitivity for distant proteins
Two options to try when clustering or searching with distantly-related proteins are --nb and

--ssort. If --nousort is specified, then --nb is the default, otherwise it may give improved

sensitivity with only a small cost in speed.

Choose suitable quality measures
Typical goals of tuning are find parameters that give high-quality results with the shortest

possible execution times. This requires a measure of quality. The log file (--log option) reports

execution time, memory use and some statistics on search and clustering which could be used as

quality measures. Alternatively, you could write a script to parse one of the output files: the --uc,

--blast6out and --userout files are well suited for this purpose.

Quality measures for clustering
For clustering, sensitivity can be measured by (i) the number of clusters or, equivalently, by the

average cluster size, and (ii) the average identity of a cluster member to the seed. Fewer clusters

(larger clusters) indicate higher sensitivity, and higher average identity with the seed indicates

that a better cluster assignment is made in cases where more than one seed matches.

Quality measures for database search
For database searching, sensitivity can be measured by (i) the fraction of query sequences that

are matched to the database at the given E-value or identity threshold, and (ii) the average

similarity of a hit. It is generally better to measure similarity by identity even if an E-value

threshold is used, because E-values range over many orders of magnitude so the mean or median

is not very informative.

Construct a query set that is small enough for testing
If a typical query set is so large that repeated testing is unreasonably slow, then the size of the set

can be reduced. For a database search application, this can be done by taking a random sample.

For clustering, a random sample is not suitable because this tends to reduce the average size of a

cluster but not the number of clusters, which increases the average number of rejections per

query. A smaller set can be obtained by clustering the input sequences and taking a subset of the

clusters. This should give a subset with similar redundancy to the original.

Test with increasing values of --maxrejects
First test with --nousort, if possible. This causes the entire database to be searched and thus

guarantees the best possible hit for a given query, but may be unreasonably slow. Either way, set

--maxaccepts 0 and try a range of values of --maxrejects, for example 8, 16, 32, 64, 128, etc.

Increase the value until your quality measure(s) do not increase significantly. Regardless of

whether you were able to use --nousort, you now have an estimate of the best possible results and

the minimum value of --maxrejects that gives you good enough results.

— 48 —

Test with increasing values of --maxaccepts
Once you know the highest values of your quality measures that can be achieved on your test

data, you can experiment with changing parameters and obtain an acceptable compromise: e.g.,

you might be satisfied with achieving 90% of the best possible sensitivity if the speed is

improved by a factor of 100.

U-sort word length
The --w option sets the word length used for U-sorting. The default is 5 for amino acids and 8 for

nucleotides. Try different values to check the effect on memory use and speed. Start by adding

and subtracting one. If adding or subtracting one gives a better result, try changing by two, and

so on.

Tune alignment heuristics
You can measure the impact of alignment heuristics by testing with and without --nofastalign. If

--nofastalign is specified, heuristics are disabled, and the execution time may be tens or hundreds

of times slower. Measures such as the number of clusters may not change much despite a

significant reduction in biological accuracy. (This happens when over-aggressive heuristics

produce many bad alignments without this causing a bias in the quality measure). Therefore, it is

best to use biologically informed reference data if possible in order to test the effects of the

heuristics. (Of course, biological reference data are preferred for tuning all parameters). The

recommended heuristics to try are summarized in the following table. For all numerical

parameters except seed word length, larger values tend to increase execution times and smaller

values are faster but may degrade accuracy, though often the effect on accuracy is negligible.

The effect of the seed word length is less predictable. Reducing the band radius is often an

effective way to improve speed without a significant loss in quality.

Option Heuristic

--wordcountreject, --nowordcountreject Enables / disables word count rejection.

For higher identities, tends to improve

speed when enabled, but may induce false

negatives.

--k Seed word length.

--nb, --nonb Use / don't use word neighborhoods

(amino acids only). Using neighborhoods

improves sensitivity; effect on speed

varies.

--seedt Seed score threshold (applies only for

amino acids and if --nb is specified).

--xdrop_u, --xdrop_g, --xdtop_ug, --xdrop_nw X-drop.

--band Radius for banded dynamic

programming.

— 49 —

USTAR: Fast multiple alignment of clusters
USEARCH can create a multiple alignment of each cluster found by UCLUST. This requires

three steps: 1. clustering (--cluster), 2. extraction of S (seed) and H (hit) records, 3. conversion to

FASTA (--uc2fastax) and 4. inserting additional gaps (--staralign).

 usearch --cluster seqs_sorted.fasta --uc results.uc --id 0.97

 grep "^[SH]" results.uc > sh.uc

 usearch --uc2fastax sh.uc --input seqs_sorted.fasta --output sh.fasta

 usearch --staralign sh.fasta --output aligned.fasta

The algorithm creates a 'star' alignment using pair-wise alignments to the seed, so the seed is the

center of the star. This method emphasizes very high speed over alignment quality. It is not

intended to replace slower but more accurate methods like MUSCLE. When sequence identity is

reasonably high, the alignment will be good enough to be informative, e.g. for identifying highly

conserved segments. Note that in addition to creating a multiple alignment, a consensus sequence

is generated for each cluster. This can be useful for high-throughput evaluation of cluster quality.

See the UHIRE algorithm for a method that can create high-quality alignments of very large sets.

http://www.drive5.com/muscle

— 50 —

Gap penalties and substitution scores
USEARCH supports a comprehensive set of gap penalty and substitution score options. Different

options apply to local vs. global alignments. All alignment scores and penalties in USEARCH

can be specified as integer, floating point or real values.

E-value calculation
E-values are calculated by Karlin-Altschul statistics assuming default values for substitution

scores and gap penalties. If you change the alignment scoring parameters, then E-value

parameters must be adjusted accordingly. This is not a trivial exercise; the easiest way is usually

to borrow parameters from some other program, such as BLAST. Contact me if you need more

information.

Substitution scores for nucleotides
Two substitution scores are used for nucleotide sequences: match and mismatch. The match

score must be positive and the mismatch score must be negative. For local alignments, the

absolute value of the mismatch score should be greater than the match score. If you use non-

default substitution scores, you should probably also specify appropriate gap penalties for those

scores.

Score Option Default

Match --match 1.0

Mismatch --mismatch –2.0

Substitution matrix for amino acids
By default, the BLOSUM62 matrix is used for amino acid sequences. The user can specify a

different matrix by using the --maxtrix filename option. The matrix should be formatted as for

NCBI BLAST. Integer or floating-point values may be used. If a different matrix is specified,

you should probably also specify appropriate gap penalties for that matrix.

mailto:robert@drive5.com?subject=Uclust%20e-values%20with%20non-default%20alignment%20scoring%20parameters

— 51 —

Gap penalties for local alignments
The --lopen and --lext options specify open and extend penalties for local alignments.

Penalty Option Default

Local gap open --lopen 10.0

Local gap extend --lext 1.0

Gap penalties for global alignments
Up to 12 separate penalties can be specified: all combinations of query / target, left / interior /

terminal, and open / extend can be assigned different penalties.

Default penalties are as follows.

Penalty Default

Interior gap open 10.0 nt, 17.0 aa

End gap open 1.0

Interior gap extend 1.0

End gap extend 0.5

End gaps (also called terminal gaps) are penalized much less than interior gaps, which is

typically appropriate when fragments are aligned to full-length sequences. These defaults can be

changed using the --gapopen and --gapext options. The nucleotide defaults would be set using

these options:

 --gapopen 10.0I/1.0E --gapext 0.5

A numerical value for a penalty is optionally followed by one or more letters that specify

particular types of gap. Here, "10.0I" means "Interior gap=10.0", and "1.0E" means "End

gap=1.0". If no letters are given after the numerical value, then the penalty applies to all gaps.

More than one letter can be specified, so for example "0.5IE" means "Interior and End gap=0.5",

which is the same as all gaps. Following are valid letters: I=Interior, E=End, L=Left, R=Right,

Q=Query and T=Target. If more than one numerical value is specified, then they must be

separated by a slash character '/'. White space is not allowed. If a star ('*') is used as the

numerical value, then the gap is forbidden. Using * in an open penalty means that the gap will

never be allowed, using * in an extension penalty means that gaps longer than one will be

forbidden. So, for example, *LQ in --gapopen means "left end-gaps in the query are not

 Query - - T H I S I S T H E Q U E R Y - -

Target A N D H E R E - - T H E T A R G E T

Left end gap
in query

Interior gap in
target

Right end gap
in query

— 52 —

allowed". A sign (plus or minus) is not allowed in the numerical value, which can be integer or

floating-point (in which case a period '.' must be used for the decimal point). The --gapopen and

--gapext options are interpreted first by setting the defaults, then by scanning the string left-to-

right. Later values override previous values.

The final settings are written to the --log file, and I strongly recommend that you use this

information to check that your options are correctly formatted. Here is another set of example

options.

 --gapopen 10.0QL/*QL/2.0TE/1.0QR --gapext 0.5I/0.1E

The resulting penalties appear as follows in the log file.

 10.00 Open penalty (query, internal)

 * Open penalty (query, left end)

 1.00 Open penalty (query, right end)

 10.00 Open penalty (target, internal)

 2.00 Open penalty (target, left end)

 2.00 Open penalty (target, right end)

 0.50 Ext. penalty (query, internal)

 0.10 Ext. penalty (query, left end)

 0.10 Ext. penalty (query, right end)

 0.50 Ext. penalty (target, internal)

 0.10 Ext. penalty (target, left end)

 0.10 Ext. penalty (target, right end)

Considerations when using non-standard gap penalties
The --gapopen and --gapext options do not always work well with the fast alignment heuristics

that are enabled by default. In some cases, especially if some gap types are forbidden, then this

can cause USEARCH to crash because no alignment is possible, and this condition is currently

not handled gracefully (this is really a bug; better would be to reject the target, but this is hard to

implement).

If possible, the best thing to do is to disable the heuristics by using --nofastalign. Then the gap

penalties should work well. If you have very large datasets and heuristics are needed, then I

recommend testing on a small subset and reviewing the --blastout file to make sure that the

alignments look reasonable for your application.

— 53 —

Sequence identity
Sequence identity can be defined in many different ways; see for example this web page and its

literature references: http://openwetware.org/wiki/Wikiomics:Percentage_identity. Identity is

usually defined to be a ratio where the numerator is the number of identities (columns containing

the same letter) in an alignment. Many choices are possible for the denominator, each of which

has pros and cons in different applications. Common choices include:

 The number of columns in the alignment (terminal gaps may be included or excluded).

 The length of the shorter sequence.

 The length of the longer sequence.

 The average sequence length.

 The number of columns containing letter pairs (i.e., gaps are ignored).

Terminal gaps
Some definitions of identity treat terminal gaps as special cases. This can be important, e.g. if

fragments are being aligned to full-length sequences, in which case terminal gaps are

experimental artifacts rather than evidence of insertions or deletions. It should be noted that

definitions of identity that count terminal gaps differently from internal gaps are more sensitive

to details of the algorithm used to generate the alignment, and in particular to gap penalties.

Problems may be caused if a short motif is misaligned close to a terminal, like this.

 Query: -XX------XXXXXXXXXXXXX------

 Target: XXXXXXXXXXXXXXXXXXXXXXXXXXXX

Presumably, the correct alignment would look more like this:

 Query: ------- XXXXXXXXXXXXXXX------
 Target: XXXXXXXXXXXXXXXXXXXXXXXXXXXX

If gapped columns count as differences and terminal gaps are discarded, then the first alignment

may have much lower identity.

The --iddef n option specifies how identity should be calculated, where n is 0, 1 ... etc. The

default is --iddef 0. The definitions used are summarized in the following tables.

http://openwetware.org/wiki/Wikiomics:Percentage_identity

— 54 —

Variable Description

Identities Number of columns containing two identical letters.

(See notes below re. wildcards).

Diffs Number of columns that do not contain identities. In other words, the

number of columns containing gaps or mismatches.

InternalDiffs Number of columns that do not contain identities, excluding terminal gaps

if any. In other words, the number of columns containing internal gaps or

mismatches.

Columns Number of columns in the alignment. Includes terminal gaps, if any.

InternalColumns Number of columns, excluding any terminal gaps.

QueryLength Length of the query sequence.

TargetLength Length of the target (database or seed) sequence.

--iddef option Name Definition

0 Default Identities / min(QueryLength, TargetLength)

(See notes below re. wildcards).

1 All diffs 1 – (Diffs / Columns)

2 Internal diffs 1 – (InternalDiffs / InternalColumns)

3 MBL 1 – (Diffs / TargetLength)

4 BLAST Identities / InternalColumns

Default definition of identity, --iddef 0
The default definition, --iddef 0, uses the length of the shorter sequence as the denominator. This

definition is the one used by the CD-HIT program, and was originally used by UCLUST to

facilitate comparison of the two programs.

Since all gap columns are discarded, this definition can report 100% identity despite gaps in the

shorter sequence. Consider the following example.

 Query: SEQ-ENCE

 Target: SEQVENCE

Here, there are 7 identities and the length of the shorter sequence is also 7, giving Id = 7/7 =

100%.

— 55 —

All-diffs definition, --iddef 1
The all-diffs definition (--iddef 1) considers every gap column and every mismatch to be a

difference, which is achieved by using the number of columns in the alignment as the

denominator. This is the same as 1 – edit_distance / columns, where edit_distance is the smallest

number of insertions, deletions and substitutions that transform one sequence into the other. In

the above example, there are 8 columns in the alignment, so Id = 7/8 = 87.5%.

Internal diffs definition, --iddef 2
The internal diffs definition (--iddef 2) is similar to all-diffs, except that terminal gaps are not

included in the number of columns. See above (Terminal gaps) for a discussion of a potential

problem with this definition. This may be more appropriate if fragment sequences (e.g., partial

16S genes from a short-read sequencing experiment) are aligned to full-length sequences

(complete genes in a reference database). Consider this example.

 Query: ---V-NC-

 Target: SEQVENCE

Here, there are 4 columns after terminal gaps are discarded, so the internal diffs Id = 3/4 = 75%,

while the default Id = 3/3 = 100% and the all-diffs Id = 3/8 = 37.5%.

Marine Biological Laboratory definition, --iddef 3
The MBL definition (--iddef 3) is similar to all-diffs, except that a gap of any length (i.e.,

consecutive series of gap columns) counts as a single difference. Both internal and terminal gaps

are counted. Identity is defined as:

 1.0 – [(mismatches + gaps)/(longer_sequence_length)]

Notice that unlike other definitions, this does not use the number of identities as the numerator.

Consider the following example.

 Query: --QVDNC-

 Target: SEQVENCE

Here, mismatches = 1 and gaps = 2 so Id = 1 – (1 + 2)/8 = 72.5%. In theory, this expression can

be negative, in which case it is considered to be zero.

BLAST definition, --iddef 4
This definition is the one used by NCBI BLAST: the number of columns in the alignment that

contain identical matches divided by the total number of columns. If the alignment is global,

terminal gaps are not included in the total number of columns.

Wildcard letters
Wildcard (ambiguous or unresolved) letters include N (nucleotides) and X,B and Z (amino

acids). Usearch treats any letter not in the standard 4- or 20-letter alphabets as a wildcard. There

are two situations where wildcards may appear: (i) computing substitution scores when

calculating the alignment, and (ii) computing identity from the alignment. A wildcard

substitution score is always zero. If the default definition is used (--iddef 0), then when

— 56 —

computing identity, a column that contains a wildcard aligned to another letter is discarded;

columns that align a wildcard letter to a gap are retained. With other values of --iddef, wildcards

are treated exactly like other letters, so e.g. NN is an identity and NA is a mismatch

(nucleotides).

— 57 —

UCHIME: Chimeric sequence detection
UCHIME is documented in a separate manual. Please visit this page:

 http://www.drive5.com/usearch/usearch_docs.html

http://www.drive5.com/usearch/usearch_docs.html

— 58 —

Memory requirements
The amount of memory needed for the database index with default options is approximately 10x

the size of a FASTA file containing the database. When clustering, the database is the final set of

seed sequences, which can be written to a FASTA file by using --seedsout. A more accurate

estimate is:

 (9x the number of letters in all sequences) + (1x the number of letters in all labels)

The amount of memory required can be reduced in a number of ways, as follows.

Search plus strand only
If you are doing a nucleotide search and you know that the query sequences are on the same

strand as the database, then the --norev option will approximately halve the memory required to

store the database index.

Compressed indexes
Compressed indexes typically use much less memory, and can actually be more sensitive at high

identities (say, 95% and above). See the compressed indexes section for more details.

Database stepping
With a default (non-compressed) index, the --dbstep n option reduces the memory required by a

factor of roughly n for large databases (less for smaller database). However, sensitivity tends to

be reduced when clustering or searching at lower identities (say, below 80%). Using --dbstep

reduces the number of processor operations required to search the in-memory database index,

which might be expected to improve speed, but in practice execution times are often slower due

to a reduction in cache coherence.

Reducing redundancy
If you have very similar sequences in your database, then it could pay to reduce redundancy by

clustering at a high identity, say 98% or 99%. This, of course, can be done using UCLUST to

pre-process your database. For sure, if you have 100% identical sequences these should be

deleted since they can adversely affect sensitivity in a U-sorted search.

Trimming sequence labels
Sequence labels, i.e. the characters following '>' in a FASTA file, are stored as-is in memory. If

your labels are long and your sequences are short, then the amount of memory required for labels

may be a significant fraction of the total memory requirement. This is true for example of the

NCBI NR protein database, which has many very long labels. In such cases it pays to reduce the

label size. For example, you could label your sequences with an integer or some other short

string that can be used as a key for retrieving longer annotations in a post-processing step. You

can use the --trunclabels option to trim labels by discarding any text after the first white space

(blank or tab).

— 59 —

Splitting the database
You can split the database into smaller pieces. This allows you to parallelize a search (e.g. by

running the query against N pieces in parallel on N machines in a cluster, or to serialize (by

running one piece after the other on a single machine). Splitting the database may also have the

advantageous side-effect of improving sensitivity. The very high speed of the USEARCH

algorithms is achieved by limiting explicit sequence comparisons to a small subset of the

database having the most unique words in common with the query sequence. As the database

size grows, more spurious sequences will tend to appear in this subset and sensitivity may be

reduced as a result.

Two-level search
If finding the closest possible match to a very large database is important in your application,

then you can combine the "reduce redundancy" and "split" strategies to achieve improved speed,

reduced memory use and (usually, but not always) higher sensitivity. The idea is to search first in

a low-redundancy database (LRD). Sequences in the LRD are annotated with the name of a

second-level database (SLD) which has more closely-related sequences. There are several SLDs

that, when combined, contain the full set of sequences. In the second pass, the query is searched

against the SLD identified in the first search.

This picture is over-simplified: we don't want a separate SLD for every sequence in the low-

redundancy DB. There are two reasons for this: if the SLD is too small, we lose the advantage of

the high search speed of USEARCH because there will be too much overhead setting up each

query. Also, we want to group related families into a single SLD because otherwise the hit to the

LRD may not correctly identify the SLD with the closest possible match.

To create the databases, I suggest the following approach.

1. Cluster at a fairly low identity; say 50% for proteins or 80% for nucleotides.

2. Pick a desired size for an SLD, say 1/N of the full database. If a cluster from step 1 is larger

than this, you can split it by clustering at a higher identity, or go back and re-cluster the entire

database at a higher identity.

Query

Low-

redundancy DB

Second-level

DBs

— 60 —

3. Merge clusters from step 1 to create the SLDs (SLD1, SLD2 ... SLDN). This can be done by a

simple greedy algorithm which can be implemented in a script, let me know if you'd like help

with this. Label each sequence with the name of its SLD (this is so that the SLD name is

available in step 5 below where the LRD is created).

4. Cluster each SLD at a high identity; say 98% for nucleotides or 90% for proteins.

5. Combine all the seeds from step 4 above, this produces the LRD.

To run a two-pass query, first search the query sequences against the LRD. Then divide them

according to the SLD identified by the LRD hit and run each subset against its SLD; this of

course can be done serially or in parallel.

— 61 —

Command line reference

Algorithms
Algorithm Description Required options

UCLUST De novo clustering --cluster fastafile

UCLUST Search + clustering --cluster fastafile --db fastaflle

UBLAST Database search --query fastafile --db fastafile

--query fastafile --udb fastafile

--query fastafile --wdb fastafile

UCHIME De novo chimera detection --uchime fastafile

UCHIME Chimera detection with

reference database

--uchime fastafile--db fastafile

Sorting
Command Command line

Sort sequences by length

--sort fastafile --output fastafile

--mergesort fastafile --output fastafile [--split size]

Sort sequences by cluster size /

abundance

--sortsize fastafile --output fastafile

Sort UCLUST file by cluster nr. --sortuc ufile --output ucfile

File format conversions
From To Command line

UCLUST (.uc) FASTA --uc2fasta ucfile --output fastafile

UCLUST (.uc) FASTA with indels --uc2fastax ucfile --output fastafile

UCLUST (.uc) CD-HIT (.clstr) --uc2clstr ucfile --output clstrfile

CD-HIT (.clstr) UCLUST (.uc) --clstr2uc clstrfile --output ucfile

— 62 —

Output files
Option Format Description

--uc filename UCLUST Tab-separated file designed primarily for clustering

pipelines but can also be useful for search. One record for

each input sequence giving its cluster assignment, identity

and alignment; and one record for each cluster giving its

size and average identity. Supported by UCLUST and

UBLAST.

--blastout filename BLAST-like Human-readable format similar to BLAST.Supported by

UCLUST and UBLAST.

--blast6out filename Tab-separated

Tabbed format with one record per hit. Compatible with the

-m8 or -outfmt 6 option of NCBI BLAST. Supported by

UCLUST and UBLAST.

--userout filename Tab-separated Tabbed format with one record per hit, fields specified by

the --userfields option (see manual). Supported by

UCLUST and UBLAST.

--seedsout filename FASTA Seed sequences, i.e. the non-redundant or reduced

redundancy set of sequences after clustering. Supported by

UCLUST only.

--consout filename FASTA Consensus sequences, one for each cluster. Computed from

a multiple alignment of the cluster. The majority letter is

taken from each column, or the column is discarded if the

majority symbol is a gap. Terminal gaps are ignored unless

the --cons_termgaps option is specified.

--fastapairs filename FASTA Pair-wise alignments in FASTA format. Supported by

UCLUST and UBLAST.

— 63 —

Database search order
Option Description

--[no]usort [Do not] test database sequences in U-sorted order, i.e. in order of

decreasing number of words in common. If --nousort is specified, the

entire database is tested and search termination options are ignored or

give an error. Default is --usort.

--[no]ssort Change U-sort order to better correlate with evolutionary distance.

Applies to amino acid databases only. If --query and --evalue are used,

then --ssort is the default, otherwise --nossort is the default.

--stable_sort Specifies that a stable algorithm should be used for U-sorting. This may

be a little slower, but gives reproducible results when a given query has

the same word count with more than one target sequence, which can

cause the accepted target to change if a non-stable sort is used. Default is

to use a non-stable sort.

--w n Word length for U-sorting. Default 5 for amino acids, 8 for nucleotides.

Changing the word length changes speed, sensitivity and memory

requirements in different ways depending on the input data and the index

type (compressed or standard).

Search termination
These options determine when a U-sorted search terminates. These options are ignored if

--nousort is specified; the entire database is searched.

Option Description

--maxaccepts n Maximum number of accepted targets. Zero means that this option

is ignored (i.e., zero means infinity). Default 1, unless

--maxtargets is specified, in which case the default is zero.

Increasing --maxaccepts improves sensitivity and also the

probability that the best possible hit is found, at the expense of

slower times. If --maxaccepts is increased, you should generally

increase --maxrejects also.

--maxrejects n Maximum number of rejected targets. Zero means that this option is

ignored (i.e., zero means infinity). Default is 32. Increasing --maxrejects

improves sensitivity by reducing the probability of a false negative, i.e.

failing to find a possible hit, at the expense of slower times.

— 64 —

Accept / reject criteria
Accept / reject criteria specify one or more sequence similarity thresholds. At least one of --id or

--evalue must be specified. Thresholds are combined with AND, so all must be satisfied for a

query-target match to be accepted.

Option Description

--id f

Minimum identity, as a value 0.0 to 1.0, meaning 0% to 100% identity.

The --iddef option determines how identity is defined. There is no

default value.

--evalue E

Maximum E-value. There is no default value.

--queryfract f

Minimum fraction of the query sequence that is covered by its alignment

to the target, as a value 0.0 to 1.0, meaning 0% to 100% coverage.

Coverage is defined as the number of letters in the query that are aligned

to letters in the target, divided by the length of the query sequence.

Default is 1.0, meaning that the option is effectively ignored.

--queryalnfract f

Minimum fraction of the query sequence that is covered by its alignment

to the target, as a value 0.0 to 1.0, meaning 0% to 100% coverage.

Coverage is defined as the number of letters in the query that appear in

the alignment, divided by the length of the query sequence. Default is

1.0, meaning that the option is effectively ignored. This option is useful

only for local alignments as all letters of the query sequence always

appear in a global alignment, so the coverage by this definition is always

100%. The difference between --queryalnfract and --queryfract is the

handling of gapped columns. With --queryalnfract, a letter is counted if

it is aligned to a gap in the taget, with --queryfract it is not counted.

--targetfract f

--targetalnfract f

Exactly as --queryfract and --queryalnfract, but for the target sequence.

--idprefix n The first n letters of the query sequence must be identical to the first n

letters of the target sequence. Default 0. This option is a special case

because (i) it is applied before an alignment is constructed, which can

save significant execution time, and (ii) failures to match do not count

for --maxrejects.

--idsuffix n The last n letters of the query sequence must be identical to the first n

letters of the target sequence. Default 0. This option is a special case

because (i) it is applied before an alignment is constructed, which can

save significant execution time, and (ii) failures to match do not count

for --maxrejects.

--leftjust The alignment is rejected if there is a left terminal gap. If this option is

given, it is recommended to also use the largest reasonable --idprefix

value for improved efficiency.

--rightjust The alignment is rejected if there is a right terminal gap. If this option is

given, it is recommended to also use the largest reasonable --idsuffix

value for improved efficiency.

--[no]wordcountreject [Do not] reject a target sequence if it has too few words in common. The

number of words in common is used to estimate identity, which is faster

— 65 —

than calculating identity from an alignment, but can give some false

negatives. Applies only to global alignments and on if --id is used as an

accept threshold. Default is --wordcountreject.

--iddef n Definition of sequence identity. See section on sequence identity for

details. Default 0.

Weak match criteria in UBLAST
Weak matches are reported in output files but are not considered accepts, will not terminate a U-

sorted search, and do not match a query to a cluster. Weak criteria are also combined with AND.

Weak matches will also be reported by UCLUST, though this is rarely useful in practice.

Option Description

--weak_id f

Minimum identity, as a value 0.0 to 1.0, meaning 0% to 100% identity.

The --iddef option determines how identity is defined.

--weak_evalue E

Maximum E-value. There is no default value.

Alignment style options
Option Description

--global

Global alignments. This is the default for UCLUST, i.e. if --cluster is

specified.

--local

Local alignments. This is the default for UBLAST, i.e. if --query

is specified.

--[no]gapped [Do not] make gapped alignments. If --nogapped is specified, ungapped

alignments will be created. The --nogapped option cannot be used if

--global is specified. Default is --gapped.

— 66 —

Alignment scoring parameters
Note that if you change these parameters, then E-values will not be calculated correctly unless

the K and Lambda parameters for E-value calculation are adjusted accordingly. If you don't need

E-values, e.g. because you use global identity as your similarity measure, then you don't need to

adjust K and Lambda.

Option Description

--match s

Match score for nucleotides. Default 1.0. Must be > 0.

--mismatch s

Mismatch score for nucleotides. Default –2.0. Must be < 0. For

local alignments, absolute value should be greater than --match.

--lopen s Gap open penalty for local alignments. Default 10.0. Must be > 0.

--lext s Gap extension penalty for local alignments. Default 1.0. Must be > 0.

--gapopen spec Specifies gap open penalties for global alignments.

--gapext spec Specifies gap extension penalties for global alignments.

--matrix filename File name of amino acid substitution matrix in NCBI BLAST format.

Default is BLOSUM62.

Alignment heuristics
Option Description

--k n

Word length for alignment seeds. Default 3 for amino acids, 4 for

nucleotides.

--minhsp n Minimum length of HSP. Default 32.In versions up to 4.0.40, this could

prevent short sequences from matching. In v4.0.41 and later, the

minimum length of an HSP is automatically set to half the shorter

sequence length if this is < n.

xdrop_u s

xdrop_g s

xdrop_ug s

xdrop_nw s

X-drop parameters for extending alignments. If the value of (maximum

alignment score found so far) – (current score) > X-drop, alignment

extension is terminated. Smaller values are faster, but will miss more

opportunities to find a higher scoring alignment by continuing to extend.

With global alignments, smaller values are faster in the HSP-finding

stage, but may result in slower overall times due to longer regions

between HSPs that must be aligned by banding.

xdrop_u: for ungapped local alignments, default 16.0.

xdrop_ug: for ungapped local alignments used to trigger gapped

extensions, default 16.0.

xdrop_g: for gapped extensions of local alignments, default 32.0.

xdrop_nw: for finding local HSPs in a global alignment, default 16.0.

--band n Radius of band for banded dynamic programming, which is used to align

regions between HSPs in a global alignment. Smaller values are faster,

but may tend to produce less accurate alignments. Default 16.

— 67 —

--[no]twohit [Do not] use two-hit word seeding. Two-hit seeding requires that two

matching words are found on a single diagonal with maximum distance

set by the --max2 option. With --notwohit, a single word match triggers

an extension. Default is --notwohit.

--[no]nb [Do not] use word neighborhoods for seeding alignments. Applies to

amino acids only. If U-sorting is enabled, default is --nonb, otherwise

the default is --nb. Using --nb is typically a little slower, but not by much

and is more sensitive for low-identity matches.

--max2 n Maximum distance between two word seeds on a diagonal. Ignored if

--notwohit is set. Default 40.

--seedt1 t Minimum score of a word seed. Used if single-hit seeding is specified

(--notwohit) and word neighborhoods are enabled. Default 13.0.

--seedt2 t Minimum score of a word seed. Used if word neighborhoods are enabled

and two-hit seeding is used. Default 11.0.

Karlin-Altschul statistics and E-value calculation
Option Description

--ka_dbsize

Effective database size, in letters. If the database has high redundancy,

the effective size should be set to a value smaller than the actual size.

Default is the actual size of the database.

--ka_gapped_k K parameter for gapped local alignments. Default 0.041 for amino acids,

0.460 for nucleotides.

--ka_ungapped_k K parameter for ungapped local alignments. Default 0.128 for amino

acids, 0.621 for nucleotides.

--ka_gapped_lambda Lambda parameter for gapped local alignments. Default 0.267 for amino

acids, 0.128 for nucleotides.

--ka_ungapped_lambda Lambda parameter for ungapped local alignments. Default 0.331 for

amino acids, 1.330 for nucleotides.

— 68 —

Other options
Option Description

--[no]rev

Search forward [and reverse] strand. Default both strands if using

--query, forward only if using --cluster. Applies to nucleotide sequences

only.

--[no]output_rejects [Do not] output rejects to the --uc file. Useful for trouble-shooting cases

where an expected match is not found. Default is --nooutput_rejects.

--mincodons n Minimum number of amino acids in a predicted ORF. Default 20.

--usersort Specifies that a user-defined sort order is used for the input sequences.

Applies to clustering only. Default is to require that input sequences are

sorted by decreasing length.

--stepwords n Select a subset of words from query so that the expected number of

words in common with an accepted target is n. Default 8. Zero means

that query stepping is disabled, so all query words will be used. Larger

values (or zero) tend to improve sensitivity at the expense of slower

speed.

--dbstep n Index every nth word in the database. Default is n=1, i.e. all words are

indexed. Using this option reduces the memory required by a factor of

roughly n. However, sensitivity tends to be reduced when clustering or

searching at lower identities (say, below 80%). Using --dbstep reduces

the number of processor operations required to search the in-memory

database index, which might be expected to improve speed, but in

practice execution times are often slower due to a reduction in cache

coherence.

--bump n Optimization for U-sorting, specified as integer percentage. Default 50.

Zero means disabled. Larger values tend to improve speed at the expense

of lower sensitivity.

--split s Size of partition for --mergesort, in Mb. Default 1000.0, i.e. 1Gb.

--quiet Do not show progress messages to standard error output while

executing.

--log logfile Log file name. Contains information about parameters and performance.

--version Write program version number and exit.

--help Write summary of command line options and exit.

