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ABSTRACT
Motivation: Aligning multiple proteins based on sequence
information alone is challenging if sequence identity is low
or there is a significant degree of structural divergence.
We present a novel algorithm (SATCHMO) that is designed
to address this challenge. SATCHMO simultaneously con-
structs a tree and a set of multiple sequence alignments,
one for each internal node of the tree. The alignment at a
given node contains all sequences within its sub-tree, and
predicts which positions in those sequences are alignable
and which are not. Aligned regions therefore typically get
shorter on a path from a leaf to the root as sequences
diverge in structure. Current methods either regard all po-
sitions as alignable (e.g. ClustalW), or align only those po-
sitions believed to be homologous across all sequences
(e.g. profile HMM methods); by contrast SATCHMO makes
different predictions of alignable regions in different sub-
groups. SATCHMO generates profile hidden Markov mod-
els at each node; these are used to determine branch-
ing order, to align sequences and to predict structurally
alignable regions.
Results: In experiments on the BAliBASE benchmark
alignment database, SATCHMO is shown to perform com-
parably to ClustalW and the UCSC SAM HMM software.
Results using SATCHMO to identify protein domains are
demonstrated on potassium channels, with implications
for the mechanism by which tumor necrosis factor alpha
affects potassium current.
Availability: The software is available for download from
http://www.drive5.com/lobster/index.htm.
Contact: bob@drive5.com

1 INTRODUCTION
The construction of multiple sequence alignments is a
focus of the computational biology community due to
its importance in a wide range of applications, including
homology modeling, phylogenetic tree reconstruction,
sub-family classification, and identification of critical
residues. When sequences are similar, many alignment

∗To whom correspondence should be addressed.

methods produce good results. However, evolutionary
divergence in multi-gene families can result in family
members with very low pairwise similarity. Even when
sequence similarity is detectable, local changes in struc-
ture between members can be significant and represent a
great challenge to alignment algorithms. Loop regions,
and other positions exposed to solvent, are known to be
far more variable than the hydrophobic core elements or
key catalytic amino acids. This is reflected in a multiple
sequence alignment of proteins in a diverse family: some
columns are found in conserved motifs, while others are
in regions with many gaps and varying residue types.

Current multiple sequence alignment methods either
treat all columns as alignable across all sequences,
e.g. ClustalW (Thompson et al., 1994), or single out
only those columns believed to be alignable across all
sequences, e.g. profile HMM methods (Krogh et al.,
1994; Eddy, 1996; Karplus et al., 1997). Both approaches
have essential limitations when applied to highly variable
protein sequences. In our experience, HMM methods tend
to be successful at detecting and aligning critical motifs
and conserved core structure of protein families, but
may not correctly align positions outside these conserved
regions. Other methods are often superior to HMMs at
correctly aligning sequences within similar subgroups;
however, subgroups with significant divergence may not
be correctly aligned to the consensus structure, causing
misalignment of family-defining conserved motifs.

Here, we present a novel multiple sequence alignment
method that attempts to present a more nuanced and
informative view of the relationships and divergence
within a set of sequences by making different predictions
of alignable regions in different subgroups.

2 THE SATCHMO ALGORITHM
We call our method SATCHMO, for Simultaneous
Alignment and Tree Construction using Hidden Markov
mOdels. Like ClustalW, SATCHMO is a progressive
method, meaning that alignments are built iteratively
in pairs. First a pair of sequences is aligned. In each
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subsequent step, a new pair is chosen and aligned to each
other. The pair could be two sequences, a sequence and
an alignment, or two alignments. When the pair includes
an alignment, columns in this alignment are kept intact in
the combined alignment; thus a column is ‘frozen’ once
it has been created. Many progressive alignment methods
have been described (see for example Chan et al., 1992;
Feng and Doolittle, 1996; Durbin et al., 1998).

SATCHMO differs from previous progressive methods
in its use of profile HMMs (Krogh et al., 1994) to
create pairwise alignments and to determine the clustering
hierarchy. It also differs in that alignments of the same
sequences are typically not the same at each tree node.
Alignment columns remain frozen; however alignments
vary in their predictions of which columns are structurally
alignable. On a path from a leaf to the root, the number
of alignable columns predicted typically gets smaller as
structures diverge. Thus, in contrast to other multiple
sequence alignment algorithms, the output of SATCHMO
cannot be presented in a single matrix. A graphical
interface is therefore provided, enabling the user to browse
the tree and examine the alignment produced at each node.

Progressive alignment can be viewed as an agglomer-
ative clustering procedure for building a binary tree in
which the leaves represent sequences and internal nodes
represent clusters of two or more sequences. For each
cluster, SATCHMO constructs an alignment of its se-
quences and a profile HMM. At the start of each iteration,
HMM scoring is used to identify the two most closely
related clusters. These two clusters are then combined by
aligning the alignment of sequences in one cluster to the
HMM of the other. A prediction is made of the positions
that are structurally alignable in the combined alignment
using a function derived from match state scores. A new
HMM is then built from the combined alignment in which
match states correspond to those positions, completing
the construction of a new cluster. This procedure exploits
proven HMM techniques that: (a) rank homologs through
scoring (Barrett et al., 1997); (b) build accurate profiles
from small numbers of sequences (Sjölander et al., 1996);
and (c) accurately combine two alignments having low
sequence similarity (Edgar, submitted).

The implementation described here is SATCHMO
version 2, which differs in a few significant details from
SATCHMO version 1 (Edgar and Sjölander, 2003); those
differences will be noted as the algorithm is discussed.

2.1 HMM architecture
We use the profile HMM architecture described by Krogh
et al. (1994) as shown in Figure 1. In SATCHMO version
1 we used a different architecture as employed by the
HMMER package (Eddy, 1996). The Krogh architecture
is more general in that it permits transitions between
delete and insert states; these are forbidden in HMMER,

Ik 

Mk Mk+1 

Dk Dk+1 

Fig. 1. Two consecutive nodes k and k +1 in a profile HMM. Letters
represent states, arrows represent transitions. Match (M) and insert
(I) states emit residues; delete (D) states are silent. Insert state Ik+1
and transitions out of Mk and Dk are not shown.

preventing a rigorous accounting for transition costs in our
alignment and scoring methods.

2.2 Sequence weighting
Following standard practice, we employ relative weights
to compensate for correlation among the sequences. We
chose the method described by Gerstein et al. (1994).
Sequence weights are re-calculated in each alignment
using only those positions predicted to be in alignable
columns. The total sequence weight used in the Dirichlet
mixture computation is determined using the method
employed by the UCSC SAM HMM software suite
(Hughey and Krogh, 1996). We define the number of bits
saved relative to the background (Kevin Karplus, personal
communication) as:

b = 1/M
∑

k

∑

a

Pk(a) log2(Pk(a)/P0(a)). (1)

Here, k = 1 . . . M is the HMM node number, a is the
amino acid type, Pk(a) is the emission probability of a
in the kth match state, and P0(a) is the approximation
to the background probability of a obtained by applying
the Dirichlet regularizer to a vector of zero counts.
We iteratively adjust the total sequence weight until b
converges on a desired value, which, following SAM,
is set to 0.5 by default. In SATCHMO version 1, we
set the total weight to be an estimate of the number
of independent sequences using a heuristic based on the
average degree of residue conservation, subject to a ceiling
which was a parameter of the algorithm. Preliminary
results (unpublished) suggest that the bits saved method
gives better alignments.

2.3 HMM construction
A profile HMM is constructed from a multiple sequence
alignment. Each column in the alignment is tagged to
indicate whether or not it is predicted to be structurally
alignable. Following the convention commonly used in
HMM software, we use upper-case letters to indicate
alignable columns and lower-case letters otherwise. One
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node is created for each alignable column. Probability
distributions for state transitions and for match state
emissions are constructed by combining observed counts
with Dirichlet mixture priors (Sjölander et al., 1996). The
probability distribution for insert state emissions is set to
the background probabilities of amino acids observed in
nature.

2.4 Aligning an alignment to an HMM
A central step in SATCHMO is to score and align an
alignment to an HMM, keeping columns of the input
alignment intact. In SATCHMO version 1, this was done
using an approximate method that treated gaps as pseudo-
residues and required all sequences to take the same path
through the HMM. In version 2 we use an extended Viterbi
algorithm that correctly accounts for transition scores of
sequences that must take different paths through the HMM
due to gaps (Edgar, submitted). This method guarantees to
find the optimal alignment with only a small increase in
computational complexity over the method used in version
1.

Consider a multiple sequence alignment A and a profile
HMM H . An alignment of A to H may be specified by
assigning an emitter state in H to each column of A. We
call such an assignment a route, which can be viewed
as a generalization of a path (if delete states are added
from all nodes for which the match state is not assigned,
then a route is exactly the path that a sequence containing
no gapped positions must take). Specifying a route π

uniquely determines the path πs that a given sequence s
in A must take through H . Let P(s|πs) be the probability
that πs generates s. The probability of A given route π is:

P(A|π) =
∏

s

P(s|πs). (2)

A most probable route π+ (there may be more than one)
is then:

π+ = argmaxπ P(A|π). (3)

The extended Viterbi algorithm is used to determine π+
and P(A| π+).

2.5 HMM scoring
Following HMMER, we define a simple null model
consisting of a single insert state that emits letters
according to the background distribution. The self-loop
probability of the state is tuned so that the average length
of the emitted sequence is the average length of a protein.
We denote by P(s|Null) the probability of sequence s
being emitted by this model, and define the score of A
against H as:

S(A, H) = 1/(M N ) log2(P(A|π+)/P(A|Null)). (4)

Here, M is the number of nodes in H , and N is the number
of sequences in A (strictly, the total sequence weight). We
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p 
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BBBBBBBBBB 
BBBBBBBBBB 

b 

MSA 

HMM 

BBBBBBBBBB 
BBBBBBBBBB 

➀

➁

Fig. 2. This diagram shows schematically how SATCHMO com-
bines two clusters a and b to create a new cluster p. Each cluster
contains a multiple sequence alignment (MSA) and a profile hidden
Markov model (HMM) built from that MSA. Here, cluster b is se-
lected as the template, meaning that its HMM is used in the process,
and cluster a is selected as the target. The MSA from a is aligned
➀ to the HMM from b, creating a combined alignment of the se-
quences in the two clusters. Then a new HMM is created ➁ from
this new MSA.

divide by M as an approximate correction for the well-
known length bias of profile HMM scores, and by N to
give a per-sequence score. This score is designed so that
values for alignments of different sizes are comparable.

2.6 Similarity measure
Given two alignments Ai and A j , we construct a model Hi
from Ai and a model Hj from A j . We define a symme-
trical similarity measure as follows:

si j = (S(Ai , Hj ) + S(A j , Hi ))/2. (5)

2.7 Prediction of alignable positions
Given two alignments, we generate a combined alignment
by constructing an HMM from one (the template), and
aligning the other (the target) to that HMM, as shown
in Figure 2. We expect that if in this alignment there is
a high probability (relative to the null model) of a match
state emitting a given template column, then the template
and target columns are alignable. A histogram of the
relative match state scores (affinities) of all model nodes
typically shows regions of generally high and low values;
the regions of high values are assumed to be alignable (see
Fig. 3). Regions of sufficiently low values are not believed
to be alignable. The minimum affinity value for predicting
alignability is a parameter of the algorithm.

Affinity proves to be a noisy signal; we therefore smooth
over a window, the length of which is another parameter

1406



SATCHMO: sequence alignment and tree construction

wSEQQk 
aSEQQc 

WSEQQK 

ASEQQC 

3

wsEQqk
asEQqc
ffCQfy

5

4
2

1

FFCQFY 

Fig. 3. A tree built by SATCHMO. Three input sequences are found
in the leaf nodes numbered 1, 2 and 3. At each interior node,
there is an alignment of the sequences in the sub-tree below that
node. Graphs show the smoothed affinity per column. The minimum
affinity threshold is indicated as a dashed line (- - -). Columns for
which the smoothed affinity exceeds this threshold are tagged as
aligned (upper-case letters, shaded background); other columns are
tagged as not aligned (lower case). In the first interior node (4),
four columns are predicted to be alignable. This is reduced to two
columns in the root node (5) where a third, more diverged sequence
(3) has been aligned to the alignment of the first two sequences (1
and 2).

of the algorithm. In detail, this is implemented as follows.
Let mk(a) be the match state emission probability of

amino acid a in node k of the template HMM, q(a) be
the background (null model) probability of a, As(i)be
the amino acid in column i of sequence s in the target
alignment A, and ck(π

+) be the column in A to which
node k is assigned in π+. We then define the affinity of
node k to the target to be:

fk = 1/N log2

∏

s

mk(As(ck(π
+)))/q(As(ck(π

+))).

(6)
Sequences that contain a gap in c(k, π+) are excluded
from the product. If π+ passes through the delete state of
node k, fk is defined to be zero. We next define W (k, w) to
be the set of nodes k−�w/2�, k−�w/2�+1 . . . k+�w/2�,
excluding from this list node numbers < 1 (before the
beginning of the model) or > M (past the end). The value
w is the window length, and is required to be an odd
integer � 1. We denote the number of nodes in this set by
|W (k, w)|. In the case of a typical node, |W (k, w)| = w;
close to the beginning or end of a model the window
contains fewer nodes. The smoothed affinity Fk of node k
is defined to be the average over the nodes in the window
centered on k:

Fk = |W (k, w)|−1
∑

l

fl , (7)

where l ∈ W (k, w). The kth position is predicted to be
alignable if and only if the smoothed affinity is not less

than a given value Z :

Fk � Z . (8)

Z is the minimum smoothed affinity threshold.

2.8 Algorithm
The SATCHMO algorithm may be summarized as
follows.

Input: A set of unaligned protein sequences.

Step 1 Create a cluster for each input sequence and
construct an HMM from the sequence (Section 2.3),
tagging each position in the sequence as alignable.
This results in a set of clusters, each having one
sequence and one HMM built from that sequence.
For each cluster, create a tree node with no edges.

Step 2 Calculate the similarity (Equation 5) of all pairs
of clusters and identify a pair ab with highest
similarity. (If more than one pair has the highest
similarity, choose one arbitrarily.) Choose a or b to
be the template according to which gives the highest
score S(A, H) (Equation 4). The other cluster then
becomes the target. Align the target to the template
(Section 2.4), creating a combined alignment of
the sequences in the two clusters. Predict alignable
regions in this combined alignment (Section 2.7)
and tag the columns accordingly. Construct a profile
HMM from this combined alignment (Section 2.3).
Create a tree node p corresponding to the new
cluster, and add edges pa and pb.

Repeat Step 2 until: (a) all sequences are assigned to one
cluster, (b) the highest similarity between clusters is
below a user-defined threshold, or (c) no alignable
positions are predicted, in which case the algorithm
terminates without creating a new cluster.

Output: A set of one or more binary trees in which
each leaf contains an input sequence and each
node contains an HMM and an alignment of the
sequences in its sub-tree.

2.9 Complexity
Given Nsequences of length L , the space complexity of
SATCHMO is dominated by the dynamic programming
matrix used by the Viterbi algorithm, which is O(L2). The
total time complexity is O(L2 N 2 + L N 3).

2.10 Graphical interface
Given N sequences, SATCHMO produces N–1 multiple
sequence alignments and a binary tree. Conventional tree
and alignment viewers cannot show this information in an
easily assimilated fashion; our implementation therefore
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Fig. 4. Two views of the SATCHMO graphical interface showing an alignment of two groups of sequences that share a common domain:
voltage gated potassium channels and TNF-alpha induced protein B12 homologs (Section 3.6). For readability, these views have been
cropped: neither view shows the whole tree or a complete alignment; also, widgets such as scrollbars have been eliminated. In the upper
view, the root node (54) of the tree (lower-left panel) is selected and the root alignment is shown (lower-right panel). The upper-right panel
displays a histogram of the affinity at each node (Equation 6), below it is a graph of the smoothed affinity (Equation 7). The upper-left panel
shows the affinity contribution from each amino acid type in a column selected by the user, sorted alphabetically (upper) and by score (lower).
SATCHMO successfully separated the two groups at the root node: the K+ channels are all found under node 53 and the B12 homologs
under node 51. In the lower view, node 51 is selected to show the alignment of the B12 homologs only. For comparison, a core block of the
common domain has been highlighted in both views (rectangle). Upper case letters indicate positions predicted to be alignable. The dashed
horizontal line in the lower-right panel separates the template alignment (above line) from the target alignment (below line). Edge lengths in
the tree are chosen for readability in the display and are uninformative.

includes a graphical interface that shows the tree and
alignments in an integrated display (Fig. 4). The user
selects an alignment by clicking on a node of the tree.

3 VALIDATION
3.1 Reference alignments
We used version 1 of the BAliBASE benchmark alignment
database (Thompson et al., 1999a) as a source of reference
alignments. BAliBASE is divided into five reference sets.
Ref1 contains alignments of a small number (<6) of
equidistant sequences, meaning that the percent identity

of all pairs is within a specified range. These Ref1
alignments contain sequences of similar length, with
no large insertions or extensions. Alignments in Ref2
combine up to three distantly related sequences (<25%
identical) from Ref1 with a family of at least 15 closely
related sequences. Ref3 contains alignments of up to four
subgroups, with <25% identity between sequences from
different groups. Ref4 contains alignments with long N/C-
terminal extensions of up to 400 residues. Ref5 has long
insertions of up to 100 residues. Ref1, 2 and 3 are divided
into groups with short, medium and long sequences. Ref1
is further subdivided by percent identity.
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3.2 Alignment quality scoring
Given an alignment produced by an algorithm (a test
alignment), we need a score that compares this with a
trusted alignment of the same sequences (the reference
alignment). BAliBASE provides a module (baliscore) that
defines two scores, SP (sum of pairs) and TC (total
columns). SP is the ratio of the number of correctly
aligned pairs of core block positions in the test alignment
to the number of aligned pairs in the reference alignment.
TC is the ratio of the number of correctly aligned core
block columns in the test alignment to the number of
core block columns in the reference alignment. Both SP
and TC range from 1.0 for perfect agreement to 0.0 for
no agreement. The designers of BAliBASE recommend
SP as the best quality score for Refs 1, 2 and 3, TC
as the best score for Refs 4 and 5 (Thompson et al.,
1999b). We wrote our own module to compute SP and
TC as the published baliscore software module produces
incorrect results on some inputs: specifically we found
that baliscore would report scores that were less than the
correct value for alignments with gapped positions. Using
the published baliscore did not change the overall rankings
of the tested methods versus our own scoring module, but
reduced median scores.

3.3 Algorithm parameters
In addition to Dirichlet mixture priors, SATCHMO has
two parameters: Z , the minimum smoothed affinity, and
w, the window length for affinity smoothing. For the
BAliBASE reference alignments, we found that the SP
and TC scores were optimized by setting Z less than
the smallest observed smoothed affinity value, which is
equivalent to disabling the prediction of alignable columns
described in Section 2.7. Thus, all alignment columns
were used to create HMM match states. We believe that
represents an artifact of the BAliBASE data and scoring
function (see Discussion). Dirichlet mixture parameters
were set to the defaults used in SAM. We configured the
Viterbi algorithm to produce global alignments as this
proved to give better results on BAliBASE than local
alignments, following the trend found in Thompson et al.
(1999b) analysis of several algorithms.

3.4 Comparison with ClustalW and SAM
We chose to compare the performance of SATCHMO with
two other methods: ClustalW, and the tuneup script found
in the UCSC SAM package. We consider these tools to be
high-quality representatives of the non-probabilistic and
HMM approaches to sequence alignment respectively.
ClustalW has been shown to have excellent performance
against BAliBASE (Thompson et al., 1999b). We used
ClustalW version 1.81 with default parameters. Karplus
and Hu (2001) found that tuneup has comparable perfor-
mance to ClustalW against BAliBASE; a conclusion that

Table 1. Here we show the median score for the three methods in each
reference category and for the complete set of BAliBASE alignments. The
value shown is the median of SP for Refs 1, 2 and 3 and of TC for Refs 4
and 5

ClustalW SAM tuneup SATCHMO

Ref1 <25% id short 0.72 0.40 0.50
Ref1 <25% id medium 0.68 0.61 0.58
Ref1 <25% id long 0.64 0.60 0.60
Ref1 20–40% id short 0.92 0.97 0.94
Ref1 20–40% id medium 0.96 0.96 0.95
Ref1 20–40% id long 0.96 0.99 0.93
Ref1 >35% id short 0.99 0.99 0.98
Ref1 >35% id medium 0.98 0.99 0.97
Ref1 >35% id long 0.99 0.99 0.99
All Ref1 0.94 0.97 0.94

Ref2 short 0.88 0.00 0.83
Ref2 medium 0.86 0.89 0.87
Ref2 long 0.86 0.87 0.78
All Ref2 0.86 0.82 0.83

Ref3 short 0.72 0.00 0.82
Ref3 medium 0.74 0.76 0.71
Ref3 long 0.83 0.74 0.85
All Ref3 0.81 0.74 0.85

Ref4 0.52 0.13 0.70
Ref5 0.58 0.75 0.58

All BAliBASE 0.88 0.89 0.88

is supported by our own results. Following Karplus and
Hu, we assigned zero scores to the 18 reference sets where
tuneup failed to produce a complete alignment of the test
sequences owing to rejection of one or more sequences
deemed to be too distantly related.

3.5 Results
We created alignments using SATCHMO version 2,
ClustalW and tuneup. Median scores for each reference
category and for BAliBASE overall are shown in Table
1. The scores show high variability, even within a narrow
category. For example, the SATCHMO SP scores in
Ref1, sub-category short sequences with less than <25%
identity, were: 1aboA = 0.400, 1idy = 0.223, 1r69 =
0.625, 1tvxA = 0.267, 1ubi = 0.500, 1wit = 0.815,
2trx = 0.614. We also found that individual scores from
SATCHMO alignments varied significantly with different
choices of Dirichlet mixtures, though the median scores
tended to remain similar. Pearson rank sum tests showed
no statistically significant difference between any pair of
algorithms.

3.6 Domain identification
Our preliminary experiments with SATCHMO suggest
that it is effective at identifying protein domains. In
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Figure 4, we show the tree constructed by SATCHMO
for two sets of proteins: TNF-alpha-induced protein B12
and homologs, and voltage-gated potassium channels.
The surprising homology between these two groups
was discovered by one of us (Sjölander, previously
unpublished) while scoring the NR database with an
HMM constructed for voltage-gated potassium channels,
where these B12 proteins received weak but significant
scores. SATCHMO assigns these two groups to separate
subtrees, and identifies a common domain. Our analysis
shows this region to be the tetramerization (T1) domain
of potassium channels, for which several solved structures
exist (e.g. PDB entry 3KVT). This allows us to predict
the fold of TNF-alpha-induced protein B12 and homologs.
Intriguingly, tumor necrosis factor alpha is known to
affect potassium current, but the precise mechanism
is unknown (Soliven et al., 1991; McLarnon et al.,
1993). Since TNF-alpha induces the B12 protein (and,
presumably, its homologs), and B12 appears to share
a common fold with the tetramerization domain, we
predict that a possible mechanism by which TNF-alpha
affects potassium current is by inducing B12, which then
tetramerizes with potassium channels, thereby affecting
potassium current.

4 DISCUSSION
We have presented SATCHMO, a novel approach to
multiple sequence alignment and tree construction that is
designed to accommodate structurally divergent families
of related protein sequences. The algorithm predicts
different extents of alignable regions in subsets of variable
structure.

Tests using the BAliBASE benchmark data set show that
SATCHMO, on average, produces alignments of the same
accuracy as ClustalW and the UCSC SAM tuneup module:
mature tools that are respected in the scientific community.
To the best of our knowledge, only three algorithms—
PRRP (Goto, 1996), T-Coffee (Notredame et al., 2000)
and MAFFT (Katoh et al., 2002)—have been shown to
produce more accurate alignments on BAliBASE. Both
PRRP and T-Coffee have significantly higher computa-
tional complexity than SATCHMO. MAFFT was brought
to our attention after this work was completed; comparison
with MAFFT is left to future work. We find it encouraging
that SATCHMO has achieved a competitive level of accu-
racy relatively early in its development and believe that its
performance can be improved by refining various aspects
of the algorithm.

The BAliBASE methodology has a number of issues
which makes it less than ideal for validating SATCHMO.
Most alignments (except those in Ref5) are limited to
core block regions, with positions before and after the
core block deleted as needed. Such trimming cannot be

performed in typical applications, as core blocks are not
known a priori. BAliBASE is therefore biased towards
algorithms that are designed for global alignment, such
as ClustalW. (For these experiments, we configured
SATCHMO for semi-global alignment, i.e. alignments
global to the template HMM, partly for this reason.)
Scoring is done only in core block regions, so does
not measure the ability of an algorithm to distinguish
alignable from unalignable regions, nor does it penalize
over-aligning, i.e. aligning regions that are not structurally
superposable. It is therefore not surprising that BAliBASE
scores are optimized by forcing SATCHMO to align
all columns assigned to match states (see Section 3.3).
The BAliBASE score gives no credit for unaligning a
region, even if this is structurally correct, so the score of
a SATCHMO alignment can only be reduced by raising
the value of the alignment threshold Z . Larger values of
Z may be more informative to the user in real applica-
tions by successfully identifying superposable regions,
however in BAliBASE the score can only decrease with
larger Z due to a core block position falling below the
given threshold and therefore being flagged as unaligned.
(Strictly speaking, it is possible that the alignment could
be improved via a shift in a later iteration, increasing the
score enough to compensate for any unaligned core block
positions, but this is presumably unlikely.)

Trees produced by SATCHMO are designed to model
the structural similarity among a group of related proteins.
This is in contrast with traditional phylogenetic tree
estimation algorithms which explicitly attempt to model,
or reconstruct, the evolutionary history among taxa. Since
protein function is mediated by protein structure, and
evolution conserves protein function, we expect that a tree
topology that clusters proteins that are similar structurally
(and functionally) to be more consistent with the true evo-
lutionary history than one that does not. But SATCHMO
is not designed with any explicit model of evolution,
and we do not assert that trees produced by SATCHMO
should be interpreted as modeling the evolutionary
history. We tested SATCHMO trees by comparing with
the structural and functional classifications of the SCOP
database (Murzin et al., 1995), which are based on expert
analysis of solved structures and experimental evidence
of function. We measured the ability of trees constructed
by SATCHMO to reproduce SCOP family classifications,
and found them to be superior to trees produced by
neighbor joining and heuristic search using the parsimony
score using the PAUP* package (Swofford, 2002), based
on multiple sequence alignments generated by ClustalW
or T-Coffee (Edgar and Sjölander, submitted).

In its current implementation, SATCHMO aligns 100
sequences of length 100 in 118 s on a 2.5 GHz Pentium
4 desktop PC: fast enough to make high-throughput
applications tractable.
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5 FUTURE WORK
We plan to review several aspects of the algorithm with
a view to possible refinements. Tests (Edgar, submitted)
suggest that Equation(4) does not predict the best choice
of target and template once a closest pair of clusters has
been identified (Section 2.8, Step 2); we therefore hope
to find a score that is better suited for this purpose (see
e.g. Barrett et al., 1997). We regard the use of a smoothed
log-odds score (Equation 7) and threshold (Equation 8)
for predicting alignable regions as a simple, preliminary
heuristic and plan to try alternative approaches. We also
plan to implement alternatives to BAliBASE for validating
alignment accuracy and the prediction of superposable
regions.
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