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We present a new algorithm (SATCHMO) that simultaneously estimates a tree and generates a 
set of multiple sequence alignments given a set of protein sequences. Alignments are const-
ructed for each node in the tree. These alignments predict the structurally conserved elements 
of the sequences in a subtree and are therefore of different lengths, and represent different 
amino acid preferences, at different nodes. Hidden Markov Models (HMMs) are also generated 
for each node and are used to determine branching order, to align sequences and to predict 
structurally alignable regions. In experiments on the BAliBASE benchmark alignment database, 
SATCHMO is shown to perform comparably to ClustalW and the UCSC SAM HMM software. 
Results using SATCHMO to identify protein domains are demonstrated on potassium channels, 
with implications for the mechanism by which tumor necrosis factor alpha affects potassium 
current. 

1  Introduction 

In the words of David Jones, “There are really only three things that govern the 
overall accuracy of comparative modeling: alignment quality, alignment quality, 
and…alignment quality” [1]. Comparative modeling is not the only application for 
which alignment quality is critical: multiple sequence alignments are used for 
profile construction, detection of critical residues, prediction of functional 
subfamilies, and a host of other tasks.  Because of its central importance, the const-
ruction of multiple sequence alignments is a focus of the computational biology 
community. When sequences are similar to each other, virtually any alignment 
method will produce good results. However, evolutionary divergence in multi-gene 
families can result in family members with pairwise similarity so low as to be indis-
tinguishable from chance. Even when sequence similarity is detectable, local 
changes in structure between members can be significant and represent a great 
challenge.  

Methods for multiple sequence alignment can be broadly classified into two 
groups: Hidden Markov Model (HMM) methods [2-4], and those that optimize 
other scoring schemes, such as ClustalW [5]. Both approaches have essential limit-
ations when applied to highly variable protein sequences. HMM methods tend to be 



  

successful at detecting and aligning critical motifs and conserved core structure of 
protein families, but may not correctly align regions between these conserved 
motifs. Other methods are often superior to HMMs at correctly aligning sequences 
within similar subgroups; however, subgroups with significant divergence may not 
be correctly aligned to the consensus structure, causing misalignment of family-
defining conserved motifs. Here we present a new method designed to overcome 
these limitations by constructing a hierarchical tree and identifying conserved 
structural elements at each level in the tree, as illustrated in Figure 1. 

 
Figure 1. SATCHMO graphical interface. 
Here we show results using Satchmo to align two groups of sequences which share a common domain: 
voltage-gated potassium channels (above) and TNF-alpha induced protein B12 homologs (below). The 
lower-left pane in each view shows the tree, clicking on a node displays the alignment at that node. Edge 
lengths in this view of the tree are chosen for convenient display and are uninformative. In the upper 
view the root node is selected, showing a region that is aligned across all sequences. Below, an internal 
node is selected to show the same region aligned across K+ channels only. The upper-right pane shows 
the affinity at each position (histogram) and smoothed affinity (see Section 2.5). The upper-left pane 
shows the affinity by residue type at the selected position, sorted alphabetically and by value. The lower-
right pane shows the sequence alignment. Upper-case letters are aligned, lower-case letters are unaligned. 
See Section 3.5 for further discussion. 



  

2 The SATCHMO algorithm 

2.1 Algorithm 

We call our algorithm SATCHMO, for Simultaneous Alignment and Tree Const-
ruction using Hidden Markov mOdels. SATCHMO is an agglomerative algorithm 
that uses HMMs to model classes produced in each iteration, to choose which two 
subtrees to join, and to generate an alignment of those two subtrees. 
 Input: A set of unaligned protein sequences. 
 Step 1: Create a node for each input sequence and construct an HMM from the 
sequence (Section 2.7). This step results in a set of trees, each consisting of a single 
node containing an HMM and a sequence. 
 Step 2: Measure the similarity Sij of all pairs of trees (Section 2.4) and identify 
a pair ab with highest similarity. Merge this pair by adding edges from a and b to a 
new node g, forming a new binary tree rooted at g. Predict the conserved structural 
elements among the sequences rooted at g (Section 2.5). Create a multiple sequence 
alignment Alng and a profile HMMg based on this prediction (Section 2.7), assign 
HMMg and Alng to g. 
 Repeat Step 2 until: (a) all sequences are assigned to one tree, (b) the highest 
similarity between trees is below a user-defined threshold, or (c) no conserved 
elements are predicted. 

2.2 HMM architecture 

We chose to make our HMMs compatible with the Plan 7 architecture defined by 
version 2.2 of the HMMer package [6], as shown in Figure 2. 

The kth node in the model (k = 1…m) has match, delete and insert states (Mk, 
Dk and Ik). The insert state in the last node (Im) is disabled; terminal insert states N 
and C emit according to the null model, allowing N- and C-terminal extensions res-
pectively; they emit on N→N and C→C transitions only. Note that D→I and I→D 
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Figure 2. HMM architecture.  
Our model architecture follows the HMMer Plan 7 model, as described in Section 2.2. 



  

transitions are forbidden. This configuration is designed to encourage alignments 
that are global to the model and local to a sequence. 

2.3 Aligning an alignment to an HMM 

A key element of the SATCHMO algorithm is the alignment of two multiple 
sequence alignments to each other by aligning one (the “target”) to a profile HMM 
constructed from the other (the “template”). This is done in such a way that 
columns of both alignments appear intact in the combined alignment; sequences in 
the target are not permitted to align individually to the profile HMM. The motiv-
ation for this constraint is the assumption that closely related sequences are already 
accurately aligned; hence any change that would be induced by re-aligning to a 
more distant profile is more likely an error than an improvement. This is 
implemented by allowing emitter (match and insert) states to generate multiple resi-
dues. If there are n sequences in the alignment, an emitter state is required to emit n 
times, producing one column. Weighting (Section 2.6) is accounted for by incl-
uding transition probabilities N times (see Equation 6) and by calculating the 
emission probability for a column as ∏i pi

ni, where pi is the residue probability 
calculated from the template counts using Equation 7, and ni are the weighted 
counts of the target column. 

Columns in the input alignment that have both gaps and residues (“mixed 
columns”) require special consideration. We allow emitter states to emit a gap (or, 
equivalently, not to emit) with a given probability. This allows the model to 
generate mixed columns without requiring sequences to take different paths. Gaps 
from emitter states (as opposed to gaps produced by delete states) are emitted with a 
background probability, so in log-odds terms contribute zero to the column score 
after subtraction of the null model. Columns in the input alignment which are 
predicted not to be alignable are assigned a zero probability of being emitted by a 
match state, thus forcing them into insert states. 

We use the Viterbi algorithm [7] to determine the most probable path through 
the model. The implementation does not require an inner loop over sequences; it 
suffices to pre-calculate the total number of residues of each type found in each 
column of the alignment being scored against the HMM. 

2.4 Relationship score and similarity measure 

We define a relationship score rij between two trees i and j from the log-odds score 
per sequence of the alignment of i (Alni) to the profile HMM of tree j (HMMj): 
 

rij =  (1/N) log2(P(Alni | HMMj) / P(Alni | Null)) / length(HMMj). (1) 



  

(3) 

 
Here, N is the estimated number of independent observations (Equation 6). 

Dividing by N gives the score per sequence, dividing by the model length corrects a 
bias towards longer models. We also define a symmetrical similarity measure, 

Sij = (rij + rji)/2. 

A large positive value of Sij indicates a close relationship between the 
sequences in i and j; zero indicates a degree of relationship indistinguishable from 
chance. 

2.5 Prediction of structurally alignable regions 

The structurally alignable regions between two trees i and j are estimated as 
follows. One tree is chosen to be the target and one the template by calculating rij 
and rji using Equation 1. If rij ≥ rji, then j is the template, otherwise j is the target. 
The target is then aligned to the template as described in Section 2.3, and affinities 
of template nodes to target columns are calculated. The affinity A(k) of the kth 
model node is defined to be the log-odds score of the target column c(k) generated 
by its match state: 

 
A(k) = (1/N) log2(P(c(k) | HMM) / P(c(k) | Null)). 

 
If the most probable path passed through its delete state, the node is assigned 

an affinity value of zero. Affinity is a noisy signal; we therefore define a smoothed 
affinity aw(k) over a window of length w, an odd integer ≥ 1: 

 
aw(k) = |W(k,w)|–1∑ q ∈ W(k,w) A(q). 

 
Here, W(k,w) is the set of nodes found in a window of length w centered on the 

kth node. |W(k,w)| is the number of nodes in that set, |W(k,w)|=w, w ≤ k ≤ (m–w). 
Window slots beyond an end of the model are empty. For example, if w=5, then the 
window at the first node k=1 has only three nodes, i.e. |W(1,5)|=3. 

The kth node is predicted to be an alignable position if and only if the 
following condition is met: 

 
aw(k) ≥ Z. 

 

(4) 

(5) 

(2) 



  

Z is described as the minimum smoothed affinity threshold; it is a parameter of 
the algorithm. 

2.6 Sequence weighting and amino acid probability estimation 

Following standard practice, we employ relative weights to compensate for cor-
relation among the sequences, using the scheme described by Gerstein et al. [8]. 

With Bayesian methods such as ours, the number of observations may swamp 
the contribution of priors to posterior amino acid estimates. We estimate the number 
of independent observations to be: 

 
N = n1–C. 

 
Here, n is the number of sequences in the alignment and C is the average over 

all columns of the fractional occurrence of the most common residue in that 
column. Hence C ranges from 1 (all positions identical) to 1/20 (all amino acids 
having equal frequency) and N ranges from 1 to approximately n. When calculating 
measured counts in model construction, sequence weights are scaled to N rather 
than to n. We introduce a maximum permitted value U for N as a second line of 
defense against under-weighting the priors; U is a parameter of the algorithm.  

Estimated residue probabilities pi, i=1...20 are calculated at each position in the 
alignment by combining the weighted observed residue counts ni with a Dirichlet 
mixture density [9], as follows (for simplicity, we refer to the jth component by its 
hyperparameters αj): 

 
pi = ∑ j P(αj | counts) (ni + αji) / (N + |αj|). 

2.7 Constructing an HMM that models the consensus structure of two alignments 

When two nodes are joined to make a new tree, their alignments are aligned to each 
other (Section 2.3) and alignable regions are estimated (Section 2.5). A profile 
HMM that models the consensus structure of the combined alignment is constructed 
by creating a node for each position that meets the minimum smoothed affinity 
condition (Equation 5); i.e., for each position that is predicted to be alignable across 
both alignments. The nodes in the new model thus correspond to a subset of the 
nodes in the template profile HMM. This guarantees that model lengths are mono-
tonically non-increasing (i.e. can get shorter but not longer) along a path from a leaf 
towards its root, reflecting the expectation that increasingly diverged proteins have 
progressively shorter mutually alignable regions. In the special case of constructing 

(7) 

(6) 



  

an HMM from a single sequence in Step 1 of the algorithm (see Section 2.1), a node 
is created for each residue. 

Match state emission probability distributions are estimated by combining 
weighted residue counts with a Dirichlet mixture prior (Equation 7). In the prelim-
inary implementation described here we use the HMMer default priors for transition 
and insert state emission probabilities; we do not attempt to estimate these para-
meters from observations (see Section 4 for further discussion). 

2.8 Complexity 

Given n sequences of length L, the space complexity of SATCHMO is dominated 
by the dynamic programming matrix used by the Viterbi algorithm, which is O(L2). 
The total time complexity is O(L2n2 + Ln3). On representative current hardware (a 
PC with one 2.5 GHz Pentium 4 processor), our implementation of SATCHMO is 
typically able to align 100 sequences of length 100 in under two minutes. 

3 Experimental results 

3.1 Reference alignments 

We used version 1 of the BAliBASE benchmark alignment database [10]. BAli-
BASE is divided into five reference sets. Ref1 contains alignments of a small num-
ber (< 6) of equidistant sequences, meaning that the percent identity between two 
sequences is within a specified range. These Ref1 alignments contain sequences of 
similar length, with no large insertions or extensions. Alignments in Ref2 add up to 
three distantly related sequences (< 25% identical) from Ref1 with a family of at 
least 15 closely related sequences. Ref3 contains alignments of up to four sub-
groups, with < 25% identity between sequences from different groups. Ref4 
contains alignments with long N/C-terminal extensions of up to 400 residues. Ref5 
has long insertions of up to 100 residues. Ref1, 2 and 3 are divided into groups with 
short, medium and long sequences. Ref1 is further subdivided by percent identity. 

3.2 Alignment quality scoring 

BAliBASE provides a module (BaliScore) that defines two scores. SP is the 
ratio of the number of correctly aligned pairs of positions in the test (predicted) 
alignment to the number of aligned pairs in the reference (structurally informed) 
alignment. TC is the ratio of the number of correctly aligned columns in the test 



  

alignment to the number of aligned columns in the reference alignment. Both SP 
and TC range from 1.0 for perfect agreement to 0.0 for no agreement. The designers 
of BAliBASE recommend SP as the best quality score for Refs1, 2 and 3, TC as the 
best score for Refs4 and 5 [11]. We wrote our own module to compute SP and TC 
as the published BaliScore software module produces incorrect results on some 
inputs: specifically we found that BaliScore would report scores that were less than 
the correct value for alignments with gapped positions. Using the published 
BaliScore gave very similar relative rankings of the tested methods to our own 
scoring module, but reduced median scores. 

We felt that while the SP and TC scores are useful, they have limitations as 
measures of alignment quality. Neither measure penalizes columns in the test align-
ment that are not structurally alignable, i.e. over-alignment. They thus fail to dist-
inguish between algorithms that predict alignable regions, such as SATCHMO and 
SAM, from those that do not, such as ClustalW. Moreover, the “correct” alignment 
is sometimes ambiguous as experts may disagree on the identification of 
homologous positions; however SP and TC give no credit for positions with small 
shifts.  

As a complementary measure of alignment quality, we used the Cline shift 
score (CSS) [12]. CSS penalizes both over- and under-alignment and gives positive, 
though reduced, scores for positions with small shifts. CSS is controlled by a para-
meter ε which determines how long a shift must be to contribute a negative value to 
the score. We follow Cline's recommendation and set ε = 0.2, which gives a 
negative score to shifts of more than five positions (approximately one turn in a 
helix). Cline defines the score on a pair-wise alignment; we take the average over 
all pairs of sequences present in both the test and reference alignments. CSS ranges 
from 1.0 in the case of perfect agreement between the test and reference alignments 
to –ε as a lower limit. 

3.3 Algorithm parameters 

In addition to Dirichlet mixture priors, SATCHMO has the following parameters: 
U, the maximum number of independent observations, Z, the minimum smoothed 
affinity, and w, the window length for affinity smoothing. Two additional param-
eters g1 and g2 are defined to isolate tuning of gap-related transitions: g1, multiplies 
the M→D (gap-open) probability, g2 multiplies the D→D (gap-extend) probability. 
The transition distributions from M and D are of course re-normalized after the 
multiplications have been applied. 

For the BAliBASE reference alignments, we found that the SP, TC and CSS 
scores were optimized by setting Z = –∞, causing all candidate positions to be 
aligned irrespective of w. This parameter setting is not optimal when aligning 
sequences that may share only a single domain, or are otherwise more variable stru-



  

cturally than those in BAliBASE (as in Figure1). For such inputs, we find setting 
Z close to 0, and using a window size w of 5 or 7, to be optimal. There was some 
sensitivity to g1 and g2: we found that g1 = g2 = 0.75 gave a small but significant 
improvement over the HMMer defaults induced by g1 = g2 = 1. Very little variation 
was found with U, which is not surprising given that BAliBASE alignments have 
small numbers of sequences; we therefore set U = ∞. We performed some 
experiments where we separated the reference alignments into training sets used for 
parameter optimization and test sets. The parameters found to be optimal for these 
smaller training sets were identical to those found to be optimal for all of 
BAliBASE. 

 
Table 1. Alignment quality scores for BAliBASE reference sets. 
For each program and each scoring method, the median score is shown for each BAliBASE refer-
ence set. In the case of Refs 1, 2 and 3, the median score in each sub-category is also shown. Finally 
the median score over all BAliBASE alignments is given for each program. We show here SP 
results for Refs 1, 2 and 3, and TC for Refs 4 and 5, following the suggestion of the BAliBASE 
authors and for consistency with their published analyses. 

 
  SP / TC   CSS  
 ClustalW SAM Satchmo ClustalW SAM Satchmo 
Ref1 short  <25% identity 0.72 0.40 0.40 0.39 0.26 0.42 
Ref1 medium <25% identity 0.68 0.61 0.73 0.52 0.22 0.51 
Ref1 long  <25% identity 0.64 0.60 0.59 0.47 0.10 0.33 
Ref1short 20-40% identity 0.92 0.95 0.93 0.70 0.59 0.73 
Ref1 medium  20-40% identity 0.96 0.97 0.96 0.78 0.56 0.80 
Ref1 long 20-40% identity 0.96 0.96 0.95 0.77 0.52 0.75 
Ref1 short >35% identity 0.99 0.99 0.98 0.90 0.94 0.89 
Ref1medium >35% identity 0.98 0.99 0.99 0.93 0.90 0.92 
Ref1long  >35% identity 0.99 0.99 0.99 0.89 0.92 0.89 
  All Ref1 0.94 0.97 0.94 0.77 0.59 0.77 
       
Ref2 short 0.88 0.00 0.76 0.68 0.81 0.67 
Ref2 medium 0.86 0.89 0.78 0.71 0.85 0.73 
Ref2 long 0.88 0.90 0.80 0.54 0.83 0.51 
  All Ref2 0.88 0.77 0.78 0.66 0.82 0.69 
       
Ref3 short 0.72 0.00 0.79 0.65 0.58 0.66 
Ref3 medium 0.74 0.76 0.66 0.75 0.62 0.77 
Ref3 long 0.91 0.90 0.88 0.64 0.77 0.66 
  All Ref3 0.84 0.76 0.60 0.71 0.71 0.74 
       
Ref4 0.52 0.32 0.74 0.24 0.00 0.25 
Ref5 0.58 0.75 0.71 0.23 0.47 0.23 
  All BAliBASE 0.88 0.90 0.88 0.70 0.67 0.69 

3.4 Comparison with ClustalW and SAM 

We chose to compare the performance of SATCHMO with two tools, ClustalW [5] 
and the UCSC SAM “tuneup” algorithm based on their SAM-T99 clustering and 
alignment method [13]. These tools are representative of the non-probabilistic and 



  

HMM categories of alignment methods respectively. ClustalW has been shown to 
have excellent performance against BAliBASE, ranking behind only PRRP [14] in 
a comparison of ten algorithms [11]. We used ClustalW version 1.81 with default 
parameters. Following the procedure recommended Karplus and Hu for evaluating 
tuneup performance on BAliBASE alignments [13], we assigned zero scores to the 
18 reference sets where tuneup failed to produce a complete alignment of the test 
sequences owing to rejection of one or more sequences deemed to be too distantly 
related. 

Median scores for the three programs on BAliBASE reference sets are shown 
in Table 1. In our preliminary implementation we do not handle undetermined res-
idues; the following reference alignments that include letters X or B were therefore 
excluded: 1bbt3_ref1, 1havA_ref1, 1ppn_ref1, 5ptp_ref1, 9rnt_ref1 2trx_ref2, 
1ajsA_ref2, 2myr_ref2, 4enl_ref2, 1ajsA_ref3, 2myr_ref3, 4enl_ref3, 1lkl_ref4 and 
2abk_ref4. 

3.5 Domain identification 

Our preliminary experiments with SATCHMO suggest that it is effective at iden-
tifying protein domains. In Figure 1, we show the tree constructed by SATCHMO 
for two sets of proteins: TNF-alpha-induced protein B12 and homologs, and 
voltage-gated potassium channels. The surprising homology between these two 
groups was discovered by one of us (Sjölander) while scoring the NR database with 
an HMM constructed for voltage-gated potassium channels [15], where these B12 
proteins received weak but significant scores. SATCHMO assigns these two groups 
to separate subtrees, and identifies a common domain. Our analysis shows this 
region to be the tetramerization, or T1, domain of potassium channels, for which a 
solved structure exists. This allows us to predict the fold of TNF-alpha-induced 
protein B12 and homologs. Even more intriguingly, tumor necrosis factor alpha is 
known to affect potassium current, but the precise mechanism is unknown [16, 17]. 
Since TNF-alpha induces the B12 protein and its homologs, and these B12 proteins 
share homology with the tetramerization domain, we predict that at least one of the 
mechanisms by which TNF-alpha affects potassium current is by inducing the B12 
proteins which tetramerize with potassium channels. 

4 Discussion 

The test results suggest that SATCHMO performs competitively with state-of-the-
art algorithms while providing more insight into common structural elements and 
variations of those elements among the input sequences. We find this encouraging, 
especially given that we regard the current implementation of SATCHMO as pre-



  

liminary and expect that significant improvements are possible. We plan to 
investigate several areas. We will pursue a more rigorous treatment of gaps and 
better estimation of transition probabilities and insert state emission probabilities. 
We will also enable local-local alignment. As presented here, SATCHMO is a 
progressive algorithm, meaning that once a pair of sequences has been aligned, this 
part of the alignment is fixed. We may find that improvements are possible by 
keeping regions of high confidence fixed and re-aligning marginal regions using 
iterative methods when more sequences have been added. We also plan to 
investigate different smoothing heuristics and alternative methods for predicting 
alignable regions. 

We also plan to investigate the performance of SATCHMO on input that is 
more representative of typical applications than the small number of carefully 
screened sequences found in the BAliBASE alignments. Adding homologs of the 
BAliBASE reference sequences may enable us to improve upon the scores reported 
hereby providing intermediates that interpolate between, and therefore guide the 
alignment of, those sequences. 

We will further explore the use of SATCHMO in phylogenetic tree con-
struction through experiments based on functionally characterized proteins. Other 
work in this area suggests that this approach can produce trees and alignments of 
high quality [18]. We will evaluate the trees constructed using experimental 
information on molecular function, binding pocket positions, and other biological 
data.  

Finally, preliminary results (as shown in Figure 1) suggest that SATCHMO is 
effective at identifying domain-level similarities between proteins, and this aspect 
of its functionality will be examined further. 
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