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ABSTRACT 
Motivation: In recent years, several methods have been 
proposed for aligning two protein sequence profiles, with 
reported improvements in alignment accuracy and homo-
log discrimination versus sequence-sequence methods 
(e.g. BLAST) and profile-sequence methods (e.g. PSI-
BLAST). Profile-profile alignment is also the iterated step 
in progressive multiple sequence alignment algorithms 
such as CLUSTALW. However, little is known about the 
relative performance of different profile-profile scoring 
functions. In this work, we evaluate the alignment 
accuracy of 23 different profile-profile scoring functions by 
comparing alignments of 488 pairs of sequences with 
identity ≤ 30% against structural alignments. We optimize 
parameters for all scoring functions on the same training 
set, and use profiles of alignments from both PSI-BLAST 
and SAM-T99. Structural alignments are constructed from 
a consensus between the FSSP database and CE struct-
ural aligner. We compare the results to sequence-seq-
uence and sequence-profile methods, including BLAST 
and PSI-BLAST. 
Results: We find that profile-profile alignment gives an 
average improvement on our test set of typically 2% to 
3% over profile-sequence alignment and approximately 
40% over sequence-sequence alignment. No statistically 
significant difference is seen in the relative performance 
of most of the scoring functions tested. Significantly better 
results are obtained with profiles constructed from SAM-
T99 alignments than from PSI-BLAST alignments. 
Availability: Source code, reference alignments and 
more detailed results are freely available at: 
http://phylogenomics.berkeley.edu/profilealignment/ 
Contact: bob@drive5.com, kimmen@uclink.berkeley.edu 
 
 
 

1. INTRODUCTION 
Pairwise alignment is a fundamental tool in computational 
biology. An alignment of protein sequences can help iden-
tify homologous positions and regions, providing insights 
into the function or structure of an uncharacterized sequence 
by suggesting similarities to a protein that has been studied 
experimentally. A score or expectation value can be com-
puted from the alignment, giving a measure of the related-
ness of two sequences. This can be used to discriminate 
homologs from unrelated sequences and indicate the degree 
of functional or structural similarity that can reliably be 
inferred. It is well known that proteins of very low sequence 
similarity sometimes are related and share a common fold 

and function, but this similarity can hard to detect in a direct 
comparison of the two primary sequences (Brenner et al., 
1998). 
   We distinguish three classes of pairwise alignment algo-
rithms. Sequence-sequence methods such as BLAST (Alt-
schul et al., 1990) and FASTA (Pearson, 1990) use the two 
primary sequences alone. Profile-sequence methods (Tat-
usov et al., 1994) such as PSI-BLAST (Altschul et al., 
1997) use the alignment of a query sequence to a set of sim-
ilar sequences as a template for further search and align-
ment. PSI-BLAST uses a position-specific scoring matrix 
(PSSM) (Gribskov et al., 1988) to summarize the infor-
mation in a template alignment. SAM-T98 (Karplus et al., 
1998) is a similar method that uses a hidden Markov model 
(HMM) (Krogh et al., 1994). PSSMs and HMMs are 
examples of profiles: statistical models that characterize a 
multiple sequence alignment. A PSI-BLAST PSSM con-
tains estimated amino acid frequencies at each position; a 
SAM-T98 HMM additionally contains position-specific gap 
penalties. Recently, several profile-profile methods have 
been proposed (Pietrokovski, 1996; Lyngsø et al., 1999; 
Panchenko et al., 2000; Rychlewski et al., 2000; Edgar, 
2002; Yona and Levitt, 2002; von Öhsen at al., 2003; 
Madera, 2003; Panchenko, 2003; Sadreyev and Grishin, 
2003). These construct an alignment of two profiles, from 
which a similarity score and pairwise alignment of the two 
query sequences can be derived. Improvements in both 
alignment accuracy and homolog recognition have been 
reported for profile-profile methods over profile-sequence 
and sequence-sequence methods. Profile-profile methods 
have been used in genome annotation and protein class-
ification (e.g. Pawlowski et al., 1999; Henikoff et al., 2000; 
Pawlowski et al., 2001). Profile-profile alignment is also the 
iterated step in progressive multiple alignment algorithms 
such as CLUSTALW (Thompson et al., 1994) and 
SATCHMO (Edgar and Sjölander, 2003). 
   Despite the promise of profile-profile methods, little is 
known about the relative performance of the proposed 
algorithms. Several factors, such as the optimization method 
(dynamic programming or stochastic sampling), sequence 
weighting, probability distribution estimation and gap 
scoring scheme, may be important. In this work, we focus 
on one key element in a profile-profile method, namely the 
scoring function that is applied to a candidate pair of 
positions. This scoring function is the profile-profile analog 
of the subsitution matrix used in sequence-sequence 
methods. We create a test framework in which the scoring 
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function varies but other design elements are maintained, 
allowing us to isolate any differences that are due to the 
position scoring function alone. 
 
1.1 Profile-profile alignment algorithms 
Most profile-profile methods can be viewed as variants of 
the well-known algorithms for pairwise sequence alignment 
(Needleman and Wunsch, 1970; Smith and Waterman, 
1981; Gotoh, 1982). A scoring function is defined as a sum 
over aligned pairs of profile positions plus gap penalties, 
and an optimal alignment is computed using dynamic prog-
ramming. Within this framework, many variations are 
possible. One key issue is the choice of scoring function for 
an aligned pair of profile positions (the position score). 
Given a finite alphabet A of size |A|, a position score is const-
rained to be of the form of a symmetrical |A| × |A| matrix, 
such as a BLOSUM (Henikoff and Henikoff, 1992) or PAM 
(Dayhoff et al., 1978) substitution matrix. A profile pos-
ition, however, is a vector of |A| real values. In the absence 
of a theoretical model, any function that maps two such 
vectors to a real number can potentially be used. A plausible 
function will assign higher scores to vectors that are similar, 
but the appropriate definition of "similar" is not clear, and 
little consensus is evident among the various proposals. 
Further discussion of position scores is found in the App-
endix (Section 6.1). 
   Profile-profile algorithms also differ in other ways. The 
amino acid alphabet is typically used, but FFAS (Rychl-
ewski et al., 2000) adds a gap character and thus has a 21-
component vector at each position. Most methods construct 
local alignments; however von Öhsen et al.'s implem-
entation is global (von Öhsen, personal communication). 
The LAMA algorithm (Pietrokovski, 1996) allows no gaps; 
most other algorithms apply affine gap penalties. COACH 
(Edgar, 2002) and PRC (Madera, 2003) use position-
specific gap penalties derived from profile HMMs. Some 
methods are not formulated as a dynamic programming 
score optimization. Lyngsø et al. (1999) align two HMMs 
by considering co-emission probabilities, and Panchenko et 
al. (2002) use Gibbs sampling. 
   In this study, we construct local alignments of two profiles 
by dynamic programming optimization of a sum over 
position scores plus affine gap penalties. We believe that 
local alignment is more sensitive to the form of the position 
score than global alignment, due to the absence of length 
constraints. 
 
2. METHODS 
2.1 Reference alignments 
We assessed alignment accuracy by comparison with struct-
ural alignments, focusing on alignments between pairs of 
low sequence identity (≤ 30%). As there can be significant 
ambiguities in the sequence alignment implied by a super-
position of distantly related structures (Cline, 2000), we 
chose pairs of structures of high similarity, and restricted 
sequence alignments to regions where two independent 

structural aligners agreed. This was done as follows. We 
selected pairs of sequences from the FSSP database (Holm 
and Sander, 1996) having ≤ 30% identity, z-score ≥ 15, 
RMSD ≤ 2.5Å and an alignment length of ≥ 50 positions. 
To reduce redundancy, these pairs were filtered so that no 
two sequences aligned to a common third sequence had 
greater than 30% identity. Structures for the remaining pairs 
were obtained from the Protein Data Bank (Berman et al., 
2000) and aligned using the CE aligner (Shindyalov and 
Bourne, 1998). The consensus of the CE and FSSP align-
ments, defined as the set of aligned residue pairs on which 
both agreed, was then extracted, and alignments shorter than 
50 positions eliminated. This produced a total of 588 
alignments ranging from 61 to 675 positions, with an 
average length of 201. Sequence identities ranged from 
9.6% to 30%, with an average of 21.8%. 
 
2.2 Alignment accuracy scoring 
We used three quality scores for comparing a test alignment 
with a reference alignment. SP is the number of correctly 
aligned pairs in the test alignment, tc, divided by the length 
of the reference alignment. This score has been used, for 
example, by Thompson et al. (1994), who call it SP, and by 
Sauder et al. (2000), who refer to it as fD, the developer's 
score. PS (reverse sum-of-pairs) is tc divided by the length 
of the test alignment; this is Sauder et al.'s fM, the modeler's 
score. Each of these scores is useful in some applications, 
but also has drawbacks. SP does not penalize over-align-
ment (i.e., aligning residue pairs that are not structurally 
alignable); PS does not penalize under-alignment. Neither 
gives credit for regions in the test alignment that are shifted 
by one or a few positions relative to the reference align-
ment; however, such regions may still be successfully used 
in homology modeling, and may even be more "correct" 
when probable homology is considered rather than atom 
coordinates alone. Cline et al. (2002) have proposed a score 
that is designed to address these issues; we call it the Cline 
score (CS). It penalizes both over- and under-alignment, and 
gives positive, although reduced, scores for positions with 
small shifts. CS has a parameter ε that controls the range of 
shifts that get positive scores; following Cline et al. we set 
ε = 0.2. All three scores have a maximum value of one in 
the case of perfect agreement. SP and PS have a minimum 
of zero when no pairs are correctly aligned; CS can achieve 
negative values when there are many large shifts. 
 
2.3 Profile construction 
Given a sequence (the seed), construction of a profile 
involves several steps, including identification of homologs, 
aligning those homologs to the seed (creating a multiple 
alignment which we call a template), determination of 
sequence weights, and finally estimation of amino acid 
probability distributions in each position. We used two 
different methods for homolog identification and alignment: 
PSI-BLAST and SAM-T99, an updated version of the 
SAM-T98 algorithm. We performed parameter optimization 
and alignment accuracy assessment separately for profiles 
produced using template alignments from each method. We 
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Table 1. Here we show selected results. SF is the position scoring 
function (Section 6.1). SP and PS are the sum-of-correct-pairs and 
reverse SP accuracy scores respectively, computed for profile-
profile alignment using SAM-T99 templates. All other columns 
show CS scores. T99 is for profile-profile alignment using SAM-
T99 templates, PB using PSI-BLAST templates. The ≤15%id 
column shows scores for the subset of 83 pairs with ≤ 15% pair-
wise identity. The ≤15seq column shows scores for the 17 pairs in 
which one or both templates had ≤ 15 sequences when made non-
redundant at 80% identity. Rows are sorted in decreasing order of 
the T99 column. The scoring function pb is PSI-BLAST, as init-
ialized from a template alignment of one seed sequence; blast is 
BLAST on the seed sequences alone. Scoring functions yl* and la* 
have the authors' recommended parameters rather than our 
optimized parameters. The slight improvement in T99 score of yl* 
over yl indicates that our optimization on the training set produced 
marginally inferior parameters for the test set. 

generated our own profiles rather than using native PSSM 
or HMM profiles produced by these methods. This allows 
us to add information not found in the native profiles, such 
as the observed amino acid frequencies before pseudo-
counts are added, and eliminates differences in sequence 
weighting and amino acid probability estimation used by 
PSI-BLAST and SAM-T99. We used the NCBI non-
redundant protein sequence database (Pruitt et al., 2003) as 
our search database. As both PSI-BLAST and SAM-T99 are 
known to introduce false-positive hits, some alignments will 
therefore contain one or more unrelated sequences. Some 
investigators (e.g., Yona and Levitt, 2002) have built 
profiles by restricting the search database to sequences 
known to belong to the same family. This avoids false 
positives, but cannot be applied when the seed is exp-
erimentally uncharacterized. Further details of our profile 
construction are given in the Appendix (Section 6.2). 

 
SF T99 PB ≤15%id ≤15seq SP PS 
pdotp 0.832 0.805 0.697 0.737 0.829 0.806 
rankp 0.830 0.807 0.706 0.717 0.835 0.794 
prc 0.829 0.801 0.693 0.796 0.834 0.794 
coach 0.829 0.806 0.697 0.737 0.830 0.797 
correlp 0.829 0.806 0.702 0.749 0.835 0.794 
correlf 0.829 0.806 0.709 0.710 0.831 0.795 
yl* 0.829 0.809 0.668 0.673 0.834 0.794 
yl 0.828 0.807 0.699 0.724 0.834 0.792 
rankf 0.827 0.809 0.703 0.566 0.830 0.797 
fdotf 0.823 0.801 0.696 0.652 0.827 0.790 
yld 0.822 0.801 0.692 0.702 0.827 0.787 
re 0.822 0.798 0.696 0.783 0.827 0.787 
mdotm 0.822 0.809 0.694 0.627 0.819 0.800 
mdotp 0.820 0.801 0.687 0.698 0.826 0.785 
fdotp 0.820 0.799 0.682 0.710 0.813 0.803 
ylf 0.819 0.790 0.685 0.339 0.824 0.790 
ali 0.819 0.801 0.671 0.684 0.825 0.785 
al 0.814 0.800 0.677 0.717 0.817 0.784 
lai 0.812 0.791 0.682 0.620 0.805 0.795 
la 0.811 0.795 0.692 0.670 0.802 0.798 
euclidp 0.810 0.786 0.666 0.688 0.815 0.777 
pb 0.802 0.758 0.568 0.544 0.733 0.768 
yldf 0.802 0.791 0.668 0.522 0.808 0.772 
euclidf 0.788 0.771 0.624 0.306 0.793 0.765 
ref 0.766 0.681 0.539 0.207 0.770 0.738 
la* 0.760 0.769 0.598 0.595 0.742 0.788 
blast 0.592 0.592 0.191 0.493 0.536 0.678 

 
2.4 Position scoring functions 
We tested 23 position scoring functions, as defined in the 
Appendix (Section 6.1). 
 
2.5 Gap and center parameters 
We apply affine gap penalties to all position scoring func-
tions. Denoting the gap open penalty by g and gap extension 
penalty by e, a gap of length λ is scored as –g – (λ – 1)e. A 
local alignment scoring function must produce both positive 
and negative scores, otherwise the alignment will be empty 
(if all scores are negative), or will be de-facto global (if all 
scores are positive). Scoring functions that are based on log-
odds scores, such as al, la and coach, are designed to do 
this. Other functions, e.g. fdotf and yl, are positive-definite, 
and must therefore be modified before they can produce 
local alignments. The simplest solution is to subtract a 
constant value which we call the center, and denote by c. 
Adjusting the center tends to change the length of a local 
alignment. We introduce a center parameter for all func-
tions, including those that have a log-odds form. 
 
2.6 Parameter optimization 
In order to achieve parity between the tested functions, we 
must optimize gap and center parameters for local align-
ment. A single quality score must be selected for this pur-
pose. Choosing SP or PS would encourage over- and under-
alignment respectively. We believe that the Cline score 
gives the best single indication of accuracy and chose to 
optimize parameters based on this measure. We selected 100 
from the 588 reference alignments at random for use as a 
training set. Details of the optimization procedure are given 
in the Appendix (Section 6.3). 

 
 
3. RESULTS 
Some selected results are shown in Table 1. Complete 
results and other supplementary materials are available from 
our Web site (see Abstract). Eliminating the three worst 
performers that score no better than PSI-BLAST (yldf, 
euclidf and ref), CS scores on the complete test set using 
SAM-T99 templates (T99 column in Table 1) range from 
0.832 (pdotp) to 0.810 (euclidp), a difference of 2.7%. A 
rank comparison of pdotp against euclidp using the 
Friedman test shows that this difference is not statistically 
significant: pdotp is better in 245 of the 488 test pairs, 
euclidp is better in 236 cases, and there are 7 ties—a differ-
ence consistent with chance variations. This is confirmed by 
observing the lack of correlation in the rankings of the 
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Table 2. Comparison of profile-profile and profile-sequence 
alignment for two selected scoring functions, al and pdotp. CS 
(prof-prof) is the average Cline quality score (CS) for the complete 
test set using profile-profile alignment, CS (prof-seq) is the score 
for profile-sequence alignment. To investigate the change due to 
re-optimizing shift and gap parameters for profile-sequence 
alignment, we tried using profile-sequence alignment with para-
meters optimized for profile-profile scoring, with the results shown 
as CS (prof-seq*). A small, but not statistically significant, imp-
rovement is seen with the re-optimized parameters. Prof-prof better 
indicates the number of test pairs for which profile-profile 
alignment gave a higher CS, Prof-seq better the number where 
profile-sequence alignment gave a higher CS, and Ties the number 
for which both gave the same CS. χ2 confidence is the statistical 
significance of the result that profile-profile alignment, on aver-
age, gives more accurate results. 

functions according to results using SAM-T99 templates 
(T99 in Table 1) and PSI-BLAST templates (PB). 
   Comparing T99 results to PB shows consistently better 
results using SAM-T99. This is statistically significant, with 
SAM-T99 giving better results in 7,905 cases, PSI-BAST 
better in 5,144 and 475 ties, showing SAM-T99 to be 
superior with a χ2 confidence level of > 99.99%. Comparing 
the template alignments, we found the most striking 
difference to be that SAM-T99 included, on average, 4.6 
times as many sequences as PSI-BLAST. This strongly sug-
gests that SAM-T99 successfully identified more homologs, 
though this may have been at the expense of including more 
false positive hits than PSI-BLAST. 
   To compare profile-profile methods against PSI-BLAST, 
we initialized PSI-BLAST from one template alignment and 
used the other seed sequence as the search database. This 
gave the results shown in the pb row in Table 1. A small, 
but significant, difference is found for some of the higher-
scoring profile-profile functions. For example, pdotp is 
better than PSI-BLAST in 310 cases, worse in 159, with 19 
ties, making pdotp superior with χ2 confidence > 99.99%. 
One should bear in mind that our profile-profile methods 
were optimized on a training set of low sequence identity 
and had the advantage of the center parameter which can 
tune the alignment length. In order to make a fair comp-
arison of profile-profile versus profile-sequence methods, 
the same procedures should be applied. We therefore optim-
ized gap and shift parameters for profile-sequence alignment 
with two scoring functions: al, a BLOSUM62 score which 
reduces to that used in BLAST and PSI-BLAST when there 
is exactly one sequence in each profile, and pdotp. For this 
experiment, a profile was constructed from one seed seq-
uence alone, and a profile-profile alignment made with a 
profile built from the SAM-T99 template for the other seed. 
Results are shown in Table 2. We see an improvement of 
2.2% in the average CS score for profile-profile versus 
profile-sequence alignment using al, and 3.2% using pdotp; 
small but statistically significant differences. Similar results 
were obtained from other position score functions (on 
profile-sequence tests performed without re-optimizing 
parameters). 

 
 al pdotp 
CS (prof-prof) 0.814 0.832 
CS (prof-seq) 0.796 0.806 
CS (prof-seq*)  0.791 0.797 
Prof-prof better 276 264 
Prof-seq better 200 210 
Ties 12 14 
χ2 confidence > 99.9% > 99.9% 
 
 
4. DISCUSSION 
We assessed the alignment accuracy of 23 different profile-
profile scoring functions on a test set of 488 alignments of 
pairs of protein structures of low identity but high structural 
similarity. We found that most of these functions performed 
slightly better than profile-sequence methods (2 to 3% imp-
rovement), and substantially better than sequence-sequence 
methods (40% improvement). No statistically significant 
difference was detectable between most of the functions on 
the full test set, or on subsets of exceptionally low identity 
or where only a few similar sequences were identified for 
inclusion in the profile. 
   We are aware of only one previous study that attempted to 
compare profile-profile scoring functions (Pietrokovski, 
1996), which found a function similar to what we call 
correlf to perform best. However, no center parameter was 
introduced, so the results are not directly comparable. 
Sadreyev and Grishin (2003) show a slight improvement in 
alignment accuracy of their profile-profile method, 
COMPASS, over Yona and Levitt's (2002) prof_sim 
program. It is not clear whether this performance difference 
is due to the position scoring function or to other factors. 

   For two of the tested scoring functions, yl and la, the 
authors who proposed these functions report their preferred 
parameters. We tested these functions using the authors' 
parameters in addition to our own, and denote those func-
tions by yl* and la* respectively1. We see from Table 1 that 
the authors' parameters for yl give very similar results, but 
in the case of la we see a significant improvement from our 
optimized parameters.  

   The tested functions vary widely in degree of theoretical 
sophistication and their cost in terms of execution time. The 
simplest, dot products such as fdotf, require only 20 
multiplications and 20 additions. A more sophisticated 
function, yl, is motivated by information theory and requires 
the evaluation of 80 logarithms at each position. Our results 
suggest that the expense of computing the more complex 
functions may have no significant benefit for the accuracy 
of the alignment. 

                                                              We found that profiles constructed from SAM-T99 align-
ments gave significantly better results than profiles const-
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ructed from PSI-BLAST alignments, giving a typical aver-
age improvement of 2 to 3%, comparable with the improve-
ment of profile-profile over profile-sequence methods. On 
average, SAM-T99 alignments contained 4.6 times as many 
sequences as PSI-BLAST, suggesting that more homologs 
were successfully identified, though possibly at the expense 
of including more false positive hits. 
   We chose to study alignment accuracy due to its intrinsic 
importance to applications such as homology modeling and 
critical residue identification, and also because of its compu-
tational tractability. Alignment accuracy can be mean-
ingfully assessed on a single alignment, whereas homolog 
discrimination has an intrinsic trade-off between coverage 
and error, and must therefore be evaluated on a large num-
ber of pairs for a range of thresholds (Brenner et al., 1998). 
Furthermore, a potentially good method may be hand-
icapped by a sub-optimal computation of a p-value or e-
value; alignment accuracy is indepedendent of this step. 
   Our results show that alignment accuracy, as assessed on 
our reference data, is not very sensitive to the functional 
form of the position score, and therefore provides little 
guidance as to which scores will perform well as a similarity 
measure. Yona and Levitt (2002) report a substantial 
improvement in homolog discrimination from their scoring 
function (yl) over PSI-BLAST, despite showing (in agree-
ment with our own findings) only a small improvement in 
alignment accuracy. We therefore plan to make a systematic 
comparison of the homolog discrimination performance of 
profile-profile scoring functions. 
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6. APPENDIX 
6.1 Position scoring functions 
We use the following notation. 
 
Symbol Description Definition 
p0

a Background probability of 
amino acid a. 

 

Bab BLOSUM62 score for 
a↔b. 

 

fka Observed (sequence 
weighted) frequency of a 
in position k. 

 

pka Estimated probability of a 
at position k. 

 

Mka HMM match score of a at 
position k. 

log2 pka / p0
a 

x • y Dot product of x and y. ∑ a xa ya 
Avg(x, y) Averaged vector.  (xa + ya)/2 
DKL(x, y) Kullback-Leibler 

divergence. 
∑ a xa log2 xa / ya 

HS(x, y) Symmetrized entropy. (DKL(x, y) + DKL(y, x))/2 
DJS(x, y) Jensen-Shannon 

divergence. 
(DKL(x, Avg(x,y)) + 
DKL(y, Avg(x,y)))/2 

Symbol Description Definition 
d(x, y) Euclidean distance. √ ∑ a (xa – ya)2 

<x> Mean of x. ∑ a xa  / |x| 

R(x, y) Pearson correlation. (∑ a (xa – <x>)  × 
         (∑ a ya – <y>) 

 –––––––––––––––––– 
√ { ∑ a (xa

2 – <x>2) × 
            ∑ a( ya

2 – <y>2) } 

 
σa(x) Rank of xa in vector x. σa(x)=1 if xa is smallest to 

σa(x)=|x| if xa  is largest; 
ties defined so that 
∑ a σa(x) remains constant. 

 
We define the following scoring functions. Subscripts 1 and 
2 refer to the two profile positions. 
 
 Name Definition 
 al ∑ a∑ b f1a f2b Bab 

 ali ∑ a∑ b f1a f2b Bab + 0.5 
 correlf R(f1, f2) 
 correlp R(p1, p2) 
 euclidf d(f1, f2) 
 euclidp d(p1, p2) 
 fdotf f1 • f2 
 fdotp f1 • p2 

 la log2 ∑ a∑ b f1a f2b 2Bab
 

 lai log2 ∑ a∑ b f1a f2b 2Bab + 0.5 
 coach M1 • f2 

 mdotm M 1 • M2 
 mdotp M 1 • p2 
 pdotp p1 • p2 

 prc log2 ∑ a p1a p2a / p0
a
2

 
 rankf R(σ(f1), σ(f2)) 
 rankp R(σ(p1), σ(p2)) 
 re HS(p1, p2) 
 ref HS(f1, f2) 
 yl (1 – DJS(p1, p2))(1 + DJS(Avg(p1, p2), p0) 
 yld 1 – DJS(p1, p2) 
 yldf 1 – DJS(f1, f2) 
 ylf (1 – DJS(f1, f2))(1 + DJS(Avg(f1, f2), p0) 
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The al function is the sum of pairs (average-log) function as 
found, for example, in CLUSTALW (Thompson et al., 
1994). The al function is the log-average score (von Öhsen 
et al., 2003). The correlf function is used in the LAMA 
algorithm (Pietrokovski, 1996). As with other functions, we 
try variants using both the observed frequencies (correlf) 
and estimated probabilities (correlp) derived by adding 
pseudo-counts computed from the Dirichlet mixture. The 
function fdotf is similar to the one used in the FFAS server 
(Rychlewski et al., 2000), coach is the COACH position 
score (Edgar, 2002); we include the other dot products for 
completeness. The rankf and euclidf functions were 
considered but rejected by Pietrokovski (1996) on the 
grounds that they were not suitable for local alignment; we 
address this by introducing the center parameter. The prc 
function is the PRC position score (Madera, 2003). The 
symmetrized relative entropy (re) is used in the BETE 
phylogenetic clustering algorithm (Sjölander, 1998). The yl 
function is Yona and Levitt's (2002); the yld function 
contains their divergence term only; it was not clear to us 
that the significance term is essential and we therefore 
wished to investigate the consequences of removing it. We 
test the possible impact of integer rounding, which preserves 
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only one or two significant figures, in the ali and lai 
functions. Note that there are significant differences in the 
cost of computing these functions. For example, dot 
products perform 20 multiplications and 20 additions, the yl 
function computes 80 logarithms. Note also that fdotp, 
coach and mdotp are asymmetrical under an exchange of the 
two profiles. The COMPASS scoring function (Sadreyev 
and Grishin, 2003) is not included here as this work was 
largely completed prior to its publication.  
 
6.2 Profile construction 
Default parameters were used for SAM-T99, as found in the 
target99 script in SAM version 3.3.1 (Hughey and Krogh, 
1996). For PSI-BLAST, we used blastpgp version 2.2.5 
with options –h 5 –e 0.1 following the advice of the author 
of the PSI-BLAST checkpointing code (Alejandro Schaffer, 
personal communication). In the case of PSI-BLAST, align-
ments produced by the final iteration were used, discarding 
any alignments from earlier iterations. Sequence weighting 
was done using Henikoff weights (Henikoff and Henikoff, 
1994), incorporating the same modifications employed by 
PSI-BLAST: gaps are treated as a 21st letter, and columns 
that are perfectly conserved are excluded from the calc-
ulation. Probabilities were estimated using Dirichlet mixture 
parameters from Sjölander et al. (1996). The total sequence 
weight relative to the priors (the estimated number of 
distinct observed sequences, corrected for over-represented 
subfamilies) was derived using a method from the SAM 
package (Kevin Karplus, personal communication), as 
follows. We define the number of bits saved relative to the 
background as: 
 

 b = 1/M ∑k ∑a  pka log2(pka /p~0
a).  

 
Here, k is the profile position, a is the amino acid type, pka is 
the estimated probability of a in the kth position, and p~0

a is 
the approximation to the background probability obtained 
by applying the Dirichlet regularizer to a vector of zero 
counts. We iteratively adjust the total sequence weight until 
b converges on a target value, which in our case we choose 
to be 0.5, following the default in SAM. 
 
6.3 Parameter optimization 
The goal of parameter optimization is to maximize the 
average CS quality score for a given position score over the 
100 training alignments as a function of center and gap 
parameters; we call this function Q(c, g, e). This is a chal-
lenging problem. Note that a sufficiently small change in 
any parameter will leave all alignments unchanged; hence Q 
is a discontinuous function whose partial derivatives are 
zero almost everywhere. In addition, a single value of Q is 
expensive to compute, and experience shows that local 
maxima are commonly found. We experimented with 
several fully automated optimization methods, but found 
none to be satisfactory, and settled on the following 
procedure. An iterated step defines a uniform grid of 53 
points in the three-dimensional parameter space, and 
computes the value of Q at each point. An approximation to 

a local maximum is identified as an interior point in the grid 
whose six neighbors all have lower values. An estimate is 
made of the coordinates of the maximum, and a grid of 
reduced size evaluated with this point at its center. If no 
local maximum is found, the grid is enlarged and / or moved 
until one is found. If multiple maxima are found, each is 
explored. This process is repeated until convergence, with 
manual inspection at each step in an attempt to identify and 
avoid local maxima. This human intervention is unfortunate 
as it introduces a subjective element (and is also somewhat 
tedious); however attempts to fully automate this procedure 
would sometimes lead to convergence on a local maximum. 
Even with human intervention, we saw no definitive way to 
avoid local maxima—as Q is a step function derived from 
the ratios of integer values, there can be a hidden maximum 
between two neighboring points in the grid that have equal 
values of Q and hence appear to have fully converged. 
Convergence in the value of Q was typically achieved to 
within approximately 0.1%, which roughly corresponds to 
shifting two residue pairs by one position over the whole 
test set, and is therefore close to the smallest possible 
change in Q. Optimization was performed separately for 
each profile position scoring function and for profiles 
derived from each search method (PSI-BLAST and SAM-
T99). We do not claim that the parameters obtained in this 
fashion are necessarily optimal for any particular applic-
ation; our primary aim, as elsewhere in this work, is to 
achieve parity between the scoring functions so that the 
results are directly comparable. 
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