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Abstract  

Background 

In a previous paper, we introduced MUSCLE, a new program for creating multiple 
alignments of protein sequences, giving a brief summary of the algorithm and 
showing MUSCLE to achieve the highest scores reported to date on four alignment 
accuracy benchmarks. Here we present a more complete discussion of the algorithm, 
describing several previously unpublished techniques that improve biological 
accuracy and / or computational complexity. We introduce a new option, MUSCLE-
fast, designed for high-throughput applications. We also describe a new protocol for 
evaluating objective functions that align two profiles. 

Results 

We compare the speed and accuracy of MUSCLE with CLUSTALW, Progressive 
POA and the MAFFT script FFTNS1, the fastest previously published program 
known to the author. Accuracy is measured using four benchmarks: BAliBASE, 
PREFAB, SABmark and SMART. We test three variants that offer highest accuracy 
(MUSCLE with default settings), highest speed (MUSCLE-fast), and a carefully 
chosen compromise between the two (MUSCLE-prog). We find MUSCLE-fast to be 
the fastest algorithm on all test sets, achieving average alignment accuracy similar to 
CLUSTALW in times that are typically two to three orders of magnitude less. 
MUSCLE-fast is able to align 1,000 sequences of average length 282 in 21 seconds 
on a current desktop computer. 

Conclusions 

MUSCLE offers a range of options that provide improved speed and / or alignment 
accuracy compared with currently available programs. MUSCLE is freely available at 
http://www.drive5.com/muscle. 

Background  
Multiple alignments of protein sequences are important in many applications, 
including phylogenetic tree estimation, secondary structure prediction and critical 
residue identification. Many multiple sequence alignment (MSA) algorithms have 
been proposed; for a recent review, see [1]. Two attributes of MSA programs are of 
primary importance to the user: biological accuracy and computational complexity 
(i.e., time and memory requirements). Complexity is of increasing relevance due to 
the rapid growth of sequence databases, which now contain enough representatives of 
larger protein families to exceed the capacity of most current programs. Obtaining 
biologically accurate alignments is also a challenge, as the best methods sometimes 
fail to align readily apparent conserved motifs [2]. We recently introduced MUSCLE, 
a new MSA program that provides significant improvements in both accuracy and 
speed, giving only a summary of the algorithm [2]. Here, we describe the MUSCLE 
algorithm more fully and analyze its complexity. We introduce a new option designed 
for high-throughput applications, MUSCLE-fast. We also describe a new method for 
evaluating objective functions for profile-profile alignment, the iterated step in the 
MUSCLE algorithm. 
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Current methods 
While multiple alignment and phylogenetic tree reconstruction have traditionally been 
considered separately, the most natural formulation of the computational problem is to 
define a model of sequence evolution that assigns probabilities to all possible 
elementary sequence edits and then to seek an optimal directed graph in which edges 
represents edits and terminal nodes are the observed sequences. This graph makes the 
history explicit (it can be interpreted as a phylogenetic tree) and implies an alignment. 
No tractable method for finding an optimal graph is known for biologically realistic 
models, and simplification is therefore required. A common heuristic is to seek a 
multiple alignment that maximizes the SP score (the summed alignment score of each 
sequence pair), which is NP complete [3]. It can be achieved by dynamic 
programming with time and space complexity O(LN) in the sequence length L and 
number of sequences N [4], and is practical only for very small N. Stochastic methods 
such as Gibbs sampling can be used to search for a maximum objective score [5], but 
have not been widely adopted. A more popular strategy is the progressive method [6, 
7] (Figure 1), which first estimates a phylogenetic tree. A profile (a multiple 
alignment treated as a sequence by regarding each column as a symbol) is then 
constructed for each node in the binary tree. If the node is a leaf, the profile is the 
corresponding sequence; otherwise its profile is produced by a pair-wise alignment of 
the profiles of its child nodes (Figure 2). Current progressive algorithms are typically 
practical for up to a few hundred sequences on desktop computers, the best-known of 
which is CLUSTALW [8]. A variant of the progressive approach is used by T-Coffee 
[9], which builds a library of both local and global alignments of every pair of 
sequences and uses a library-based score for aligning two profiles. On the BAliBASE 
benchmark [10, 11], T-Coffee achieves the best results reported prior to MUSCLE, 
but has a high time and space complexity that limits the number of sequences it can 
align to typically around one hundred. In our experience, errors in progressive 
alignments can often be attributed to one of the following issues: sub-optimal 
branching order in the tree, scoring parameters that are not optimal for a particular set 
of sequences (especially gap penalties), and inappropriate boundary conditions (e.g., 
seeking a global alignment of proteins having different domain organizations). 
Misalignments are sometimes readily apparent, motivating further processing 
(refinement). One approach is to use a progressive alignment as the initial state of a 
stochastic search for a maximum objective score (stochastic refinement). 
Alternatively, pairs of profiles can be extracted from the progressive alignment and 
re-aligned, keeping the results only when an objective score is improved (horizontal 

refinement) [12]. 

Implementation 
The basic strategy used by MUSCLE is similar to that used by PRRP [13] and 
MAFFT [14]. A progressive alignment is built, to which horizontal refinement is then 
applied. 

Algorithm overview 

MUSCLE has three stages. At the completion of each stage, a multiple alignment is 
available and the algorithm can be terminated. 

Stage 1: draft progressive 
The first stage builds a progressive alignment. 
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1.1 Similarity measure 

The similarity of each pair of sequences is computed, either using k-mer counting or 
by constructing a global alignment of the pair and determining the fractional identity. 

1.2 Distance estimate 

A triangular distance matrix is computed from the pair-wise similarities. 

1.3 Tree construction 

A tree is constructed from the distance matrix using UPGMA or neighbor-joining, and 
a root is identified. 

1.4 Progressive alignment 

A progressive alignment is built by following the branching order of the tree, yielding 
a multiple alignment of all input sequences at the root. 

Stage 2: improved progressive 
The second stage attempts to improve the tree and builds a new progressive alignment 
according to this tree. This stage may be iterated. 

2.1 Similarity measure 

The similarity of each pair of sequences is computed using fractional identity 
computed from their mutual alignment in the current multiple alignment.  

2.2 Tree construction 

A tree is constructed by computing a Kimura distance matrix and applying a 
clustering method to this matrix. 

2.3 Tree comparison 

The previous and new trees are compared, identifying the set of internal nodes for 
which the branching order has changed. If Stage 2 has executed more than once, and 
the number of changed nodes has not decreased, the process of improving the tree is 
considered to have converged and iteration terminates. 

2.4 Progressive alignment 

A new progressive alignment is built. The existing alignment is retained of each 
subtree for which the branching order is unchanged; new alignments are created for 
the (possibly empty) set of changed nodes. When the alignment at the root is 
completed, the algorithm may terminate, return to step 2.1 or go to Stage 3. 

Stage 3: refinement 
The third stage performs iterative refinement using a variant of tree-dependent 
restricted partitioning [12]. 

3.1 Choice of bipartition 

An edge is deleted from the tree, dividing the sequences into two disjoint subsets (a 
bipartition). Edges are visiting in order of decreasing distance from the root. 
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3.2 Profile extraction 

The profile (multiple alignment) of each subset is extracted from the current multiple 
alignment. Columns containing no residues (i.e., indels only) are discarded. 

3.3 Re-alignment 

The two profiles obtained in step 3.2 are re-aligned to each other using profile-profile 
alignment. 

3.4 Accept/reject 

The SP score of the multiple alignment implied by the new profile-profile alignment 
is computed. If the score increases, the new alignment is retained, otherwise it is 
discarded. If all edges have been visited without a change being retained, or if a user-
defined maximum number of iterations has been reached, the algorithm is terminated, 
otherwise it returns to step 3.1. Visiting edges in order of decreasing distance from the 
root has the effect of first re-aligning individual sequences, then closely related 
groups 

Algorithm elements 

In the following, we describe the elements of the MUSCLE algorithm. In several 
cases, alternative versions of these elements were implemented in order to investigate 
their relative performance and to offer different trade-offs between accuracy, speed 
and memory use. Most of these alternatives are made available to the user via 
command-line options. Four benchmark datasets have been used to evaluate options 
and parameters in MUSCLE: BAliBASE [10, 11], SABmark [15], SMART [16-18] 
and our own benchmark, PREFAB [2]. 

Objective score 
In its refinement stage, MUSCLE seeks to maximize an objective score, i.e. a function 
that maps a multiple sequence alignment to a real number which is designed to give 
larger values to better alignments. MUSCLE uses the sum-of-pairs (SP) score, defined 
to be the sum over pairs of sequences of their alignment scores. The alignment score 
of a pair of sequences is computed as the sum of substitution matrix scores for each 
aligned pair of residues, plus gap penalties. Gaps require special consideration (Figure 
3). We use the term indel for the symbol that indicates a gap in a column (typically a 
dash '–'), reserving the term gap for a maximal contiguous series of indels. The gap 
penalty contribution to SP for a pair of sequences is computed by discarding all 
columns in which both sequences have an indel, then applying an affine penalty g + 
λe for each remaining gap where g is the per-gap penalty, λ is the gap length (number 
of indels in the gap), and e is the gap-length penalty (sometimes called the extension 
penalty).  

Progressive alignment 

Progressive alignment requires a rooted binary tree in which each sequence is 
assigned to a leaf. The tree is created by clustering a triangular matrix containing a 
distance measure for each pair of sequences. The branching order of the tree is 
followed in postfix order (i.e., children are visited before their parent). At each 
internal node, profile-profile alignment is used to align the existing alignments of the 
two child subtrees, and the new alignment is assigned to that node. A multiple 
alignment of all input sequences is produced at the root node (Figure 1). 



6 

Similarity measures 
We use the term similarity for a measure on a pair of sequences that indicates their 
degree of evolutionary divergence (the sequences are assumed to be related). 
MUSCLE uses two types of similarity measure: the fractional identity D computed 
from a global alignment of the two sequences, and measures obtained by k-mer 
counting. A k-mer is a contiguous subsequence of length k, also known as a word or 
k-tuple. Related sequences tend to have more k-mers in common than expected by 
chance, provided that k is not too large and the divergence is not too great. Many 
sequence comparison methods based on k-mer counting have been proposed in the 
literature; for a review, see [19]. The primary motivation for these measures is 
improved speed as no alignment is required. MAFFT uses k-mer counting in a 
compressed alphabet (i.e., an alphabet in which symbols denote classes that may 
contain two or more residue types) to compute its initial distance measure. The 
alphabet used in MAFFT is taken from [20], and is one of the options implemented in 
MUSCLE. Trivially, identity is higher or equal in a compressed alphabet; it cannot be 
reduced. If the alphabet is chosen such that there are high probabilities of intra-class 
substitution and low probabilities of inter-class substitution, then we might expect that 
detectable identity (and hence the number of conserved k-mers) could be usefully 
extended to greater evolutionary distances while limiting the increase in matches due 
to chance. We have previously shown [21] that k-mer similarities correlate well with 
fractional identity, although we failed to find evidence that compressed alphabets 
have superior performance to the standard alphabet at lower identities. We define the 
following similarity measure between sequences X and Y: 
 
  F = Σ τ min [ nX(τ), nY(τ) ] / [ min (LX, LY) – k + 1 ].       (1) 
 
Here τ is a k-mer, LX, LY are the sequence lengths, and nX(τ) and nY(τ) are the number 
of times τ occurs in X and Y respectively. This definition can be motivated by 
considering an alignment of X to Y and defining the similarity to be the fraction of k-
mers that are conserved between the two sequences. The denominator of F is the 
maximum number of k-mers that could be aligned. Note that if a given k-mer occurs 
more often in one sequence than the other, the excess cannot be conserved, hence the 
minimum in the numerator. The definition of F is an approximation in which it is 
assumed that (after correcting for excesses) common k-mers are always alignable to 
each other. MUSCLE also implements a binary approximation FBinary, so-called 
because it reduces the k-mer count to a present / absent bit: 
 
 F

Binary = Σ τ δXY(τ) / [ min (LX, LY) – k + 1 ].         (2) 
 
Here, δXY(τ) is 1 if τ is present in both sequences, 0 otherwise. As multiple instances 
of a given k-mer in one sequence are relatively rare, this is often a good 
approximation to F. The binary approximation enables a significant speed 
improvement as the size of the count vector for a given sequence can be reduced by 
an order of magnitude. This allows the count vector for every sequence to be retained 
in memory, and pairs of vectors to be compared efficiently using bit-wise instructions. 
When using an integer count, there may be insufficient memory to store all count 
vectors, making it necessary to re-compute counts several times for a given sequence. 
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Distance measures 
Given a similarity value, we wish to estimate an additive distance measure. An 
additive measure distance measure d(A,B) between two sequences A and B satisfies 
d(A,B) = d(A,C) + d(C, B) for any third sequence C, assuming that A, B and C are all 
related. Ideal but generally unknowable is the mutation distance, i.e. the number of 
mutations that occurred on the historical path between the sequences. The historical 
path through the phylogenetic tree extends from one sequence to the other via their 
most recent common ancestor. The mutation distance is trivially additive. The 
fractional identity D is often used as a similarity measure; for closely related 
sequences 1 – D is a good approximation to a mutation distance (it is exact assuming 
substitution at a single site to be the only allowed type of mutation and that no 
position mutates more than once). As sequences diverge, there is an increasing 
probability of multiple mutations at a single site. To correct for this, we use the 
following distance estimate [22]: 
 
 dKimura = –loge (1 – D – D2/2)             (3) 
 
For D ≤ 0.25 we use a lookup table taken from the CLUSTALW source code. For k-
mer measures, we use: 
 
 dkmer = 1 – F.                 (4) 

Tree construction 

Given a distance matrix, a binary tree is constructed by clustering. Two methods are 
implemented: neighbor-joining [23], and UPGMA [24]. MUSCLE implements three 
variants of UPGMA that differ in their assignment of distances to a new cluster. 
Consider two clusters (subtrees) L and R to be merged into a new cluster P, which 
becomes the parent of L and R in the binary tree. Average linkage assigns this 
distance to a third cluster C: 
 
 d

Avg
PC = (dLC + dRC)/2.               (5) 

 
We can take the minimum rather than the average: 
 
 d

Min
PC = min [ dLC, dRC ].              (6) 

 
Following MAFFT, we also implemented a weighted mixture of minimum and 
average linkage: 
 
 d

Mix
PC = (1 – s) dMin

PC + s dAvg
PC,            (7) 

 
where s is a parameter set to 0.1 by default. Clustering produces a pseudo-root (the 
last node created). We implemented two other methods for determining a root: 
minimizing the average branch weight [25], as used by CLUSTALW, and locating the 
root at the center of the longest span. 

Sequence weighting 

Conventional wisdom holds that sequences should be weighted to correct for the 
effects of biased sampling from a family of related proteins; however, there is no 
consensus on how such weights should be computed. MUSCLE implements the 
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following sequence weighting schemes: none (all sequences have equal weight), 
Henikoff [26], PSI-BLAST [27] (a variant of Henikoff), CLUSTALW's, GSC [28], 
and the three-way method [29]. We found the use of weighting to give a small 
improvement in benchmark accuracy results, e.g. approximately 1% on BAliBASE, 
but saw little difference between the alternative schemes. The CLUSTALW method 
enables a significant reduction in complexity (described later), and is therefore the 
default choice. 

Profile functions 

In order to apply pair-wise alignment methods to profiles, a scoring function must be 
defined for a pair of profile positions, i.e. a pair of multiple alignment columns. This 
function is the profile analog of a substitution matrix; see for example [30]. We use 
the following notation. Let i and j be amino acid types, pi the background probability 
of i, pij the joint probability of i and j being aligned to each other, Sij the substitution 
matrix score, f xi the observed frequency of i in column x of the first profile, f xG the 
observed frequency of gaps in that column, and αx

i the estimated probability of 
observing i in position x in the family. (Similarly for position y in the second profile). 
Estimated probabilities α are derived from the observed frequencies f, typically by 
adding heuristic pseudo-counts or by using Bayesian methods such as Dirichlet 
mixture priors [31]. A commonly used profile function is the sequence-weighted sum 
of substitution matrix scores for each pair of letters, selecting one from each column 
(PSP, for profile SP): 
 
 PSPxy = Σ i Σ j f 

x
i f 

y
j Sij.              (8) 

 
Note that Sij = log (pij / pi pj) [32], so 
 
 PSPxy = Σ i Σ j f 

x
i f 

y
j log (pij / pi pj).           (9) 

 
PSP is the function used by CLUSTALW and MAFFT. It is a natural choice when 
attempting to maximize the SP objective score: if gap penalties are neglected, 
maximizing PSP maximizes SP under the constraint that columns in each profile are 
preserved. (This follows from the observation that the contribution to SP from a pair 
of sequences in the same profile is the same for all alignments allowed under the 
constraint). MUSCLE implements PSP functions based on the 200 PAM matrix of 
[33] and the 240 PAM VTML matrix [34]. In addition to PSP, MUSCLE implements 
a function we call the log-expectation (LE) score. LE is a modified version of the log-
average (LA) profile function that was proposed on theoretical grounds [35]: 
 
 LAxy = log Σ i Σ j α

x
i α

y
j pij / pi pj.            (10) 

 
LE is defined as follows: 
 
 LExy = (1 – f xG) (1 – f yG) log Σ i Σ j f 

x
i f 

y
j pij / pi pj.       (11) 

 
The MUSCLE LE function uses probabilities computed from VTML 240. Note that 
estimated probabilities α in LA are replaced by observed frequencies f in LE. The 
factor (1 – fG) is the occupancy of a column. Frequencies fi must be normalized to sum 
to one if indels are present (otherwise the logarithm becomes increasingly negative 
with increasing numbers of gaps even when aligning conserved or similar residues). 
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The occupancy factors are introduced to encourage more highly occupied columns 
(i.e., those with fewer gaps) to align, and are found to significantly improve accuracy. 
We avoid these complications in the PSP score by computing frequencies in a 21-
letter alphabet (amino acids + indel), and by defining the substitution score of an 
amino acid to an indel to be zero. This has the desired effect of down-weighting 
column pairs with low occupancies, and can also be motivated by consideration of the 
SP function. If gap penalties are ignored, then this definition of PSP preserves the 
optimization of SP under the fixed-column constraint by correctly accounting for the 
reduced number of residue pairs in columns containing gaps. 

Gap penalties 
We call the first indel in a gap its gap-open; the last its gap-close. Consider an 
alignment of two profiles X and Y, and a gap of length λ in X in which the gap-open 
is aligned to position yo in Y and the gap-close to yc. The penalty for this gap is b(yo) 
+ t(yc) + λe, where b and t are costs for opening and closing a gap that vary according 
to the position in Y, and e is a length cost (sometimes called a gap extension penalty) 
that does not vary by position. A fixed length cost allows a minor optimization of the 
scoring scheme [14]. Consider a global alignment of sequences X and Y having 
lengths LX and LY. If a constant δ (the center) is added to each substitution matrix 
score and δ/2 is added for each gapped position, this adds the constant value 
δ(LX+LY)/2 to the score of any possible alignment, and the set of optimal alignments 
is therefore unchanged. Given a scoring scheme with substitution matrix Sij and 
extension penalty e, we can thus choose δ/2 = e and instead use S'ij = Sij + 2e and e' = 
0 to obtain the same alignment. The constant 2e can be added to the substitution 
matrix at compile time, and no explicit extension penalty is then needed in the 
recursion relations. MUSCLE uses this optimization for the PSP function, but not for 
LE (where the center must be added at execution time after taking the logarithm). Let 
f 

y
o be the number of gap-opens in column y in Y and f yc be the number of gap-closes 

in column y. MUSCLE computes b and t as follows (Figure 4): 
 
 b(y) = g/2 (1 – f yo) (1 + hw(y) H),            (12) 
 
 t(y) = g/2 (1 – f yc) (1 +  hw(y) H).            (13) 
 
Here, g is a parameter that can be considered a default per-gap penalty, hw(y) is 1 if y 
falls within a window of w consecutive hydrophobic residues or zero otherwise, and H 
is a tunable parameter. By default, w=5, H=1.2. The factor g/2 (1 – f yo) is motivated 
by considering the SP score of the alignment. The gap penalty contribution to SP for a 
pair of sequences (A ∈ Y, B ∈ X) is computed by discarding all columns in which 
both sequences have an indel, then applying an affine penalty g + λe for each 
remaining gap. It is convenient here to consider that half of the per-gap penalty g is 
applied to the open position and half to the close position. Suppose a gap G is inserted 
into X such that the gap-open is aligned to position y in Y. If a sequence s ∈ Y has a 
gap-open at y, then the SP score includes no open penalty for G induced by any pair 
(s, t) : t ∈ X. The multiplier (1 – f yo) therefore corrects the gap-open contribution to 
the SP score due to pre-existing gaps in Y. (It should be noted that even with this 
correction, there are other issues related to gaps and PSP still does not exactly 
optimize SP under the fixed-column constraint). The increased penalty in 
hydrophobic windows is designed to discourage gaps in buried core regions where 
insertions and deletions are less frequent. Note that MUSCLE treats open and close 
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positions symmetrically, in contrast to CLUSTALW, which treats the open position 
specially and may therefore tend to produce, in word processing terms, left-aligned 
gaps with a ragged right margin. 

Terminal gaps 
A terminal gap is one that opens at the N-terminal position of the sequence to which it 
is aligned or closes at the C-terminal; as opposed to an internal gap. It has been 
suggested [9, 36] that global methods have intrinsic difficulties with long deletions or 
insertions. We believe that these difficulties are often due to the choice of penalties 
for terminal gaps. CLUSTALW, which charges no penalty for terminal gaps, tends to 
fail to open a needed internal gap and thus fail to align terminal motifs; MAFFT, 
which charges the same penalty for terminal and internal gaps, sometimes aligns 
small numbers of residues to a terminal by inserting an unnatural internal gap. By 
default, MUSCLE penalizes terminal gaps with half the penalty of an internal gap. 
This is done by setting b(1), the open penalty at the C-terminal, and t(L), the close 
penalty at the N-terminal, to zero (Figure 4). The option of always applying full 
penalties, as in MAFFT, is also provided. We found that the compromise of a half 
penalty for terminal gaps gave good results for a wide range of input data, but that 
further improvements could sometimes by achieved by the following technique. If the 
length ratio of the two profiles to be aligned exceeds a threshold (by default, 20%), 
then MUSCLE constructs four different alignments in which gaps at both, one or 
neither terminals are fully penalized. A conservation score is defined by subtracting 
all gap penalties (both internal and terminal) from the alignment score, leaving a sum 
over profile functions only. The alignment with the highest conservation score is used. 

Tree comparison 

In progressive alignment, two subtrees will produce identical alignments if they have 
the same set of sequences at their leaves and the same branching orders (topologies). 
We exploit this observation to optimize the progressive alignment in Stage 2 of 
MUSCLE, which begins by constructing a new tree. Unchanged subtrees are 
identified, and their alignments are retained (Figure 5). A progressive alignment of the 
changed subtrees is constructed, producing the same alignment at the root that would 
be obtained starting from the leaves. Tree comparison is performed by the following 
algorithm. Consider two trees A and B with identical sets of N leaves. Leaves are 
identified by consecutive integers (ids) 1 through N. Call a pair of nodes, one from 
each tree, equivalent if they are the same leaf or they are internal nodes and their 
children are equivalent. The left/right position of a child is not considered; in other 
words, subtree rotations are allowed (because they do not change the results of a 
progressive alignment). Traverse A in prefix order (children before their parent), 
assigning internal nodes ids N + 1 through 2N in the order visited. When visiting an 
internal node PA, take the ids of its two child nodes LA and RA and use them as indexes 
into a lookup table pointing to nodes in B. If (a) LA is equivalent to a node LB in B and 
R

A is equivalent to a node RB, and (b) LB and RB have the same parent PB, then assign 
P

B the same id as PA, to which it is equivalent. When the traversal is complete, a node 
b in B is equivalent to some node in A if and only if b has an id. This procedure is 
O(N) time and space.  

Defaults, optimizations and complexity analysis 

We now discuss the default choices of algorithm elements in the MUSCLE program 
and analyze their complexity. 
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Complexity of CLUSTALW 
It is instructive to consider the complexity of CLUSTALW. This is of intrinsic 
interest as CLUSTALW is currently the most widely used MSA program and, to the 
best of our knowledge, its complexity has not previously been stated correctly in the 
literature. It is also useful as a baseline for motivating some of the optimizations used 
in MUSCLE. The CLUSTALW algorithm can be described by the same steps as 
Stage 1 above. The similarity measure is the fractional identity computed from a 
global alignment, clustering is done by neighbor-joining. Global alignment of a pair 
of sequences or profiles is computed using the Myers-Miller linear space algorithm  
[37] which is O(L) space and O(L2) time in the typical sequence length L. Given N 
sequences and thus N(N – 1)/2 = O(N 

2) pairs, it is therefore O(N 
2
L

2) time and O(N 
2 

+ L) space to construct the distance matrix. The neighbor-joining implementation is 
O(N 

2) space and O(N 
4) time, at least up to CLUSTALW 1.82, although O(N 

3) time 
is possible; see e.g. [38]. A single iteration of progressive alignment computes a 
profile of each subtree from its multiple alignment, which is O(NPLP) time and space 
in the number of sequences in the profile NP and the profile length LP, then uses 
Myers-Miller to align the profiles in O(LP) space and O(LP

2) time. There are N – 1 
internal nodes in a rooted binary tree and hence O(N) iterations. It is often assumed 
that LP is O(L), i.e. that O(0) gaps are introduced in each iteration. However, we often 
observe the alignment length to grow approximately linearly, i.e. that O(1) gaps are 
added per iteration. For example, taking the average over all iterations in all 
alignments in version 3 of the PREFAB benchmark, Stage 1 of MUSCLE adds 2.8 
gaps per iteration to the longer profile. It is therefore more realistic to assume that LP 
is O(L + N), making one iteration of progressive alignment O(NL + L2) in both space 
and time. This analysis is summarized in Table 1.  

Initial distance measure 
One might expect (a) that a more accurate distance measure would lead to a more 
accurate final alignment due to an improved tree, and (b) that errors due to a less 
accurate distance measure might be eliminated by allowing Stage 2 to iterate more 
times. Neither of these expectations is supported by our test results (unpublished). 
Allowing Stage 2 to iterate more than once with the goal of further improving the tree 
gave no significant improvement with any distance measure. Possibly, the tree is 
biased towards the MSA that was used to estimate it, and the MSA is biased by the 
tree used to create it, making it hard to achieve improvements. The most accurate 
measure on a pair of sequences is presumably the fractional identity D computed from 
a global alignment, but use of D in step 1.1 does not improve average accuracy on 
benchmark tests. The 6-class Dayhoff alphabet used by MAFFT proved to give 
slightly higher benchmark accuracy scores, despite the fact that other alphabets were 
found to correlate better with D [21]. We also found that the use of the binary 
approximation FBinary gave slightly reduced accuracy scores even when Stage 2 was 
allowed to iterate. The default choice in MUSCLE is therefore to use the Dayhoff 
alphabet in step 1.1 and to execute Stage 2 once only. While the impact on the 
average accuracy of the final alignment due to the different options is not understood, 
we observe that a better alignment of a pair of sequences is often obtained from a 
multiple alignment than from a pair-wise alignment, due to the presence of 
intermediate sequences having higher identities. It is therefore plausible that D 
obtained from the multiple alignment in step 2.1 may be more accurate than D 
obtained from a pair-wise alignment in step 1.1, and this may be relatively insensitive 
to the method used to create the tree for Stage 1. But this leaves unexplained why k-
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mer counting appears to be as good as or better than D in Stage 1. Computing F from 
a pair of sequences is O(L) time and O(1) space, so for all pairs the similarity 
calculation is O(N 

2
L), compared with O(N 

2
L

2) in CLUSTALW. For a typical L 
around 250, combined with an order of magnitude improvement due to the simplicity 
of k-mer counting compared with dynamic programming, this typically gives a three 
orders of magnitude speed improvement for computing the distance matrix in 
MUSCLE compared with CLUSTALW. The default strategy is therefore well 
justified as a speed optimization, and has the added bonus of providing a small 
improvement in accuracy. 

Clustering 
MUSCLE implements both UPGMA and neighbor-joining. We found UPGMA to 
give slightly better benchmark scores than neighbor-joining; UPGMA is therefore the 
default option. We expect neighbor-joining to give a better estimate of the correct 
evolutionary tree (see e.g. [38]). However, it is well-known that alignment accuracy 
decreases with lower sequence identity (see e.g. [39]). It follows that given a set of 
profiles, the two that can be aligned most accurately will tend to be the pair with the 
highest identity, i.e. at the shortest evolutionary distance. This is exactly the pair 
selected by the nearest-neighbor criterion in UPGMA. By contrast, neighbor-joining 
selects a pair of evolutionary neighbors, i.e. a pair having a common ancestor. When 
mutation rates are variable, the evolutionary neighbor may not be the nearest neighbor 
(Figure 7). This explains why a nearest-neighbor tree may be superior to the true 
evolutionary tree for guiding a progressive alignment. Neighbor-joining is naively 
O(N 4) time, although this can be reduced to O(N 3). UPGMA is naively O(N 3) time 
as the minimum of an N 2 matrix must be found in each of N – 1 iterations. However, 
this can be reduced to O(N 2) time by maintaining a vector of pointers to the minimum 
value in each row of the matrix. We are again fortunate to find that the most accurate 
method is also the fastest. 

Dynamic programming 
The textbook algorithm for pair-wise alignment with affine penalties employs three 
dynamic programming matrices; see e.g. [40, 41]. A more time- and space-efficient 
implementation can be achieved using linear space for the recursion relations and a 
single matrix for trace-back (Kazutaka Katoh, personal communication). Consider 
sequences X and Y length LX, LY. We use the following notation: Xx is the xth letter 
in X, Xx the first x letters in X, Sxy the substitution score (or profile function) for 
aligning Xx to Yy, b

X
x the score for a gap-open in Y that is aligned to Xx, t

X
x the score 

for a gap-close aligned to Xx, Uxy the set of all alignments of Xx to Yy, Mxy the score of 
the best alignment in Uxy ending in a match (i.e., Xx and Yy are aligned), Dxy the score 
of the best alignment ending in a delete relative to X (Xx is aligned to an indel) and Ixy 
the score of the best alignment ending in an insert (Yy is aligned to an indel). A match 
is preceded by either a match, delete or insert, so: 
 
 Mxy  = Sxy + max { Mx–1y–1, D x–1y–1 + tX

x–1, I x–1y–1 + tY
y–1}     (14) 

 
We assume that a center parameter has been added to Sxy such that the gap extension 
penalty is zero. By considering all possible lengths for the final gap, 
  
 Dxy  = max(k<x) [ Mky + bX

k+1 ].            (15) 
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Here, k is the last position in X that is aligned to a letter in Y. Extract the special case 
of a gap of length 1: 
 
 Dxy = max { max(k<x–1) [ Mky + bX

k+1], Mx–1y + bX
x }.       (16) 

 
Hence, 
 
 Dxy = max { Dx–1y, Mx–1y + bX

x }.            (17) 
 
Similarly, 
 
 Ixy = max { Ixy–1, Mxy–1 + bY

y }.            (18) 
 
Let the outer loop iterate over increasing x and the inner loop over increasing y. For 
fixed x, define vectors Mcurr

y = Mxy, M
prev

y = Mx–1y, D
curr

x = Dxy, D
prev

x = Dx–1y; for 
fixed x, y define scalars Icurr = Ixy, I

prev = Ixy–1. Now we can re-write (14), (17) and (18) 
to obtain the following recursion relations: 
 
 Mcurr

y = Sxy + max { Mprev
y–1, D

prev
y–1 + tX

x–1, I
prev

y–1 + tY
y–1 }    (19) 

 
 Dcurr

y = max { Dprev
y, M

prev
y + bX

x }           (20) 
 
 Icurr  = max { Iprev , Mprev

y + bY
y }.            (21) 

 
An LX × LY matrix is needed for the trace-back that produces the final alignment. 

Inner loop 

The inner-most dynamic programming loop, which computes the profile function, 
deserves careful optimization. We will consider the case of PSP; similar optimizations 
are possible for LE. PSP = Σ i Σ j f 

x
i f 

y
j Sij = Σ i f 

x
iW

y
i, where Wy

i = Σ j f 
y
j Sij. The 

vector Wy
i is used LX times, and it therefore pays to compute it once and cache it. 

Observe that a typical profile column contains << 20 different amino acids. We sort 
the frequencies in decreasing order; the summation Σ i f 

x
i W

y
i is terminated if a 

frequency f xi = 0 is encountered. This typically reduces the time spent in the 
summation, especially when sequences are closely related. As with Wy

i, the sort order 
is computed once and cached. Observe that the roles of the two profiles are not 
symmetrical. It is most efficient to choose X, for which frequency sort orders are 
computed, to be the profile with the lowest amino acid diversity when averaged over 
columns. With this choice, the summation terminates earlier on average then if the 
other profile is identified as X. Note that out of N – 1 iterations of progressive 
alignment, a minimum of N/2 and maximum of N – 1 profile-profile alignments will 
include at least one profile containing one sequence only, and in the refinement phase 
exactly N of the 2N – 1 edges in the tree terminate on a leaf. At least half of all 
profile-profile alignments created in the MUSCLE algorithm therefore include a 
profile of one sequence only. Special cases where one or both profiles is a single 
sequence can be handled in separate subroutines, saving overhead due to unneeded 
loops that are guaranteed to execute once only. This optimization is especially useful 
for the LE function as it enables the logarithm to be incorporated into the W vector. 
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Diagonal finding 
Many alignment algorithms are optimized for speed, typically at some expense in 
average accuracy, by using fast methods to identify regions of high similarity between 
two sequences, which appear as diagonals in the similarity matrix. The alignment path 
is then constrained to include these diagonals, reducing the area of the dynamic 
programming matrix that must be computed. MAFFT uses the fast Fourier transform 
to find diagonals. MUSCLE uses a different technique which we have previously 
shown [21] have comparable sensitivity and to be significantly faster. We use a 
compressed alphabet to find k-mers in common between two sequences, then attempt 
to extend the match. In the case of diagonal identification we found compressed 
alphabets to significantly out-perform the standard amino acid alphabet [21]. 
Currently, MUSCLE uses 6-mers in the Dayhoff alphabet for diagonal finding, as for 
the initial distance measure, though other alphabets are known to give slightly better 
performance [21]. A candidate diagonal is rejected if there is any overlap (i.e., if a 
single position in one of the sequences appears in two or more diagonals) or if it is 
less than a minimum length (default 24). The ends of the diagonal are deleted (by 
default, the first and last five positions) as they are less reliable. Despite these 
heuristics, we find the use of diagonal-finding to reduce average accuracy and to give 
only modest improvements in speed for typical input data; this option is therefore 
disabled by default. Similar results are seen in MAFFT; the most accurate MAFFT 
script is NWNSI [14], in which diagonal-finding is also disabled. 

Additive profiles 

Both the PSP and LE profile functions are defined in terms of amino acid frequencies 
and position-specific gap penalties. The data structure representing a profile is a 
vector of length LP in which each element contains frequencies for each amino acid 
type and a few additional values related to gaps. We call this data structure a profile 

vector, as distinct from a profile matrix, an explicit N × LP multiple alignment 
containing letters and indels. For N > 20, using profile vectors reduces the cost of 
computing the profile function compared with profile matrices, and is therefore 
preferred for use in dynamic programming. In CLUSTALW and MAFFT, the 
implementation of progressive alignment builds a profile matrix at each internal node 
of the tree, which is used to compute a profile vector. This procedure is O(NLP) = 
O(N 

2 + NL) in time and space, becoming expensive for large N. Observe that the 
count of a given amino acid in a column in the parent matrix is the sum of the counts 
in the two child columns that are aligned at that position (Figure 7). With a suitable 
sequence weighting scheme, it is therefore possible to compute the amino acid 
frequencies of the parent profile vector from the frequencies in the two child profile 
vectors and the alignment path. This is an O(LP) procedure in both time and space, 
giving a significant advantage for N >> 20. Three issues must be addressed to fully 
implement this idea: the sequence weighting scheme, inclusion of occupancy factors 
and position-specific gap penalties, and construction of a profile matrix (i.e., the final 
multiple alignment) at the root node. 

Sequence weighting 

For the frequencies in the parent profile vector to be a linear combination of the child 
frequencies, the weight assigned to a sequence must be the same in the child and 
parent profiles. This requirement is not satisfied, for example, by the Henikoff or PSI-
BLAST schemes, which compute weights based on a multiple alignment. We 
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therefore choose the CLUSTALW scheme, which computes a fixed weight for each 
sequence from edge lengths in the tree. 

Gap representation 

To compute gap penalties, we need the frequencies fo of gap opens and fc of gap 
closes in each position. In the case of the LE profile function, we additionally require 
the gap frequency fG. These can be accommodated by storing fo, fc and fe in the profile 
vector, where fe is the frequency of gap-extensions in the column (meaning that indels 
are found in a given sequence in the column, the preceding column and in the 
following column; i.e., a gap-close is not counted as an extension). These three 
occupancy frequencies are sufficient for computing the profile function and the 
position-specific gap penalties b and t. Note that we can compute the frequency fG of 
indels, as needed for the occupancy factor in the profile function, as follows: 
 
 fG = fo + fc + fe.                 (22)  
 
Now consider the problem of computing the occupancy frequencies in the parent 
profile vector, given only the child occupancy frequencies and the trace-back path for 
the alignment. Consider first a diagonal edge in the path, i.e. an edge that does not 
open or extend a gap, following another diagonal edge. In this case, the occupancy 
frequencies are computed similarly to amino acid frequencies (as a sum in which a 
child frequency is weighted according to the total weight of the sequences in its 
profile). For horizontal or vertical edges, i.e. edges that open or extend gaps, the 
parent occupancy frequencies can be computed by considering the effect of the new 
column of indels (Figure 8). It is straightforward to work through all cases and show 
that the three frequencies fo, fc and fe are sufficient for their values in the parent profile 
vector to be computed in O(LP) time from the child profile vectors and alignment 
path. 

Construction of the root alignment 

By avoiding the use of profile matrices, the complexity of a single progressive 
alignment iteration is reduced from O(LP

2 + NLp) space and O(LP
2 + NLP) time to 

O(LP
2) = O(L2 + NL) space and time. The NL term in the time complexity is now due 

only to the increase in profile length, and is therefore typically much smaller than 
before. The root alignment is constructed by storing the alignment path produced at 
each internal node. For each input sequence, the path to the root is followed, inserting 
the gaps induced by each alignment path at each internal node. This procedure is 
O(NLP log N) = O(N 

2 log N + NL log N) time, and requires O(NLP) = O(NL + N 
2) 

space for storage of the paths. This is expensive for large N, and we therefore 
optimize this step by using a device we call an e-string, a type of edit string. 

E-strings 

An alignment path can be considered as an operator on a pair of sequences that inserts 
indels into those sequences such that their lengths become equal. Conventionally, an 
alignment path is represented as a vector of three symbols representing edges in the 
graph, say M, D and I (for match, delete and insert, i.e. a diagonal, horizontal or 
vertical edge). Note that indels in one sequence are inserted only by Ds, indels in the 
other are inserted only by Is. Define an e-string e to be a vector of |e| integers 
interpreted as an operator that inserts indels into a string by scanning it from left to 
right (Figure 9). A positive integer n means skip n letters of the string; a negative 
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integer –n means insert n indels at the current position. We require the vector to be in 
its shortest form, so signs always alternate. We represent an alignment path as a pair 
of e-strings, one for each sequence, assigned to the appropriate edges in the tree. We 
will typically find that |e|, the length of the e-string, is much less than LP, the length of 
the alignment path. Now consider the effect of applying two consecutive e-strings 
("multiplying" them). This can be expressed as a third e-string, which can be 
efficiently computed in O(|e|) time from the multiplicands. For each leaf (input 
sequence), the product is computed of e-strings on the path to the root (Figure 10). 
The final e-string obtained at the root is then applied to the sequence. This method 
does not reduce the big-O time or space complexity, but is much faster than a naive 
implementation. 

Brenner's method 

Steven Brenner (personal communication) observed that a multiple alignment can be 
alternatively be obtained by aligning each sequence to the root profile. This requires 
O(NLP

2) time, giving a lower asymptotic complexity in N at the expense of an 
additional factor of LP. This method gives opportunities for errors relative to the 
"exact" e-string solution (when a sequence misaligns to its copy in the profile), but 
can also lead to improvements by allowing the sequence to correctly align to 
conserved motifs that were not apparent when the sequence was added. (Note the 
resemblance to the refinement stage, which begins by re-aligning individual 
sequences to the rest). The chances for error are reduced by constraining the 
alignment to forbid gaps in the root profile. Our tests show that this method gives 
comparable average accuracy to the e-string solution but to be slower for up to at least 
a few thousand sequences, and e-strings are therefore used by default. 

Refinement complexity 
In the following, we assume that an explicit multiple alignment (profile matrix) of all 
sequences is maintained, and determine the complexity of each step in Stage 3. Step 
3.1 determines the bipartition induced by deleting an edge from the tree. This is O(N) 
time, and sufficiently fast that there is little motivation for further optimization. Step 
3.2 extracts profiles for the two partitions from the current multiple alignment and 
computes their profile vectors, which is O(NLP) time and space. Step 3.3 performs 
profile-profile alignment, which is O(LP

2) time and space. Step 3.4 computes the SP 
score, which is O(N 

2
LP) time and O(NLP) space (discussed in more detail shortly). A 

single iteration of Stage 3 is thus O(N 
2
LP + LP

2) time and O(NLP + LP
2) space. There 

are O(N) edges in the tree, so executing this process for all edges is O(N 
3
LP + NLP

2) 
time and O(NLP + LP

2) space, which is O(N 
4 + N 

3
L + NL

2) time and O(N 
2 + NL + L2) 

space. Assuming that a fixed maximum number of iterations of Stage 3 is imposed, 
this is also the total complexity of refinement. We now consider optimizations of the 
refinement stage. 

Anchor columns 
A multiple alignment can be divided vertically at high-confidence (anchor) columns. 
Each vertical block is then refined separately, improving speed and reducing space 
due to the O(L2) factor in dynamic programming. This strategy has been used by 
several previous algorithms, including PRRP [13], RASCAL [42] and MAFFT. In 
MUSCLE, the following criteria are used to identify anchor columns. The profile 
function (LE or PSP) must exceed a threshold, the averaged profile function over a 
window around the position must exceed a (lower) threshold, and the column may not 
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contain a gap. In addition, the contribution to the averaged score from a single column 
has a ceiling, reducing skew in the averaged score due to exceptionally high-scoring 
columns. These heuristics are designed to avoid anchor columns that have high scores 
but are either artifacts (similar residues found by chance in unrelated regions) or are 
too close to variable regions. When performing a profile-profile alignment, each 
anchor column and its two immediate neighbors (which form the boundaries of 
vertical blocks) are required to remain aligned; i.e., terminal gaps are forbidden 
except at the true terminals. Introducing this constraint overcomes a small degradation 
in average alignment quality that is otherwise observed. This implies that the 
degradation is sometimes due to cases where a well-conserved region is divided into 
two parts by an anchor column, one of which becomes short enough that it misaligns 
to a similar short motif elsewhere. 

SP score 
Notice that computation of the SP score dominates the time complexity of refinement 
and of MUSCLE overall, introducing O(N 

4) and O(N 
3
L) terms. We are therefore 

motivated to consider optimizations of this step. We first consider the contribution 
SPa to the SP score from amino acids; gap penalties require special treatment. Let s 
and t be sequences, x be a column, s[x] be the amino acid of sequence s in column x, 
and S(i, j) be the substitution score of amino acids i and j. It is convenient to impose 
an (arbitrary) ordering on the sequences and amino acid types. Then, 
 
 SPa = Σ x Σ s Σ t > s S(s[x], t[x]).            (23) 
 
Define δ(s, i, x) = 1 if s[x] = i, 0 otherwise, and ni[x] = Σ s δ(s, i, x). We say ni[x] is the 
count of amino acid type i in column x. We can now transform the sum over pairs of 
sequences into a sum over pairs of amino acid types: 
 
 SPa = Σ x Σ i ni  Σ j n j > i S(i, j) + 1/2 Σ x Σ i (ni

2 –  ni) S(i, i).     (24) 
 
Frequencies are computed as: 
 
 f

x
i = ni[x]/N.                 (25) 

 
Using frequencies, 
 
 SPa = N2 Σ x Σ i f 

x
i  Σ j > i f 

x
j S(i, j) + N2/2 Σ x Σ i (f 

x
i
2 –  f xi /N) S(i, i).  (26) 

 
For simplicity, we have neglected sequence weighting; it is straightforward to show 
that (26) applies unchanged if weighting is used. Note that (23) is O(N 

2
LP) but (25) 

and (26) are O(NLP). For N >> 20, this is a substantial improvement. Let SPg be the 
contribution of gap penalties to SP, so SP = SPa + SPg. It is natural to seek an O(NLP) 
expression for SPg analogous to (26), but to the best of our knowledge no solution is 
known. Note that in MUSCLE refinement, the absolute value of the SP score is not 
needed; rather, it suffices to determine the difference in the SP scores before and after 
re-aligning a pair of profiles. Let SP(s, t) be the contribution to the SP score from a 
pair of sequences s and t, so SP = Σ s Σ t > s SP(s, t), and denote the two profiles by X 
and Y. Then we can decompose SP into intra- and inter-profile terms as follows: 
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 SP = Σ s ∈ X Σ t ∈ X : t > s SP(s, t) + Σ s ∈ Y Σ t ∈ Y : t > s SP(s, t)  
             + Σ s ∈ X Σ t ∈ Y SP(s, t)   (27) 
 
Note that the intra-profile terms are unchanged in any alignment that preserves the 
columns of the profile intact, which is true by definition in profile-profile alignment. 
This follows by noting that any indels added to align the profiles are guaranteed to be 
external gaps with respect to any pair of sequences in the same profile. It therefore 
suffices to compute the change in the inter-profile term: 
 
 SPXY = Σ s ∈ X Σ t ∈ Y SP(s, t).             (28) 
 
This reduces the average time by a factor of about two. We can further improve on 
this by noting that in the typical case, there are few or no changes to the alignment. 
This suggests computing the change in SP score by looking only at differences 
between the two alignments. Let π– be the alignment path before re-alignment and π+ 
the path after re-alignment. The change in alignment can be specified as the set of 
edges in π– or π+, but not both; i.e., by considering a path to be a set of edges and 
taking the set symmetric difference ∆π = (π– ∪ π+) – (π– ∩ π+). The path π+ after re-
alignment is available from the dynamic programming traceback. The path π– before 
re-alignment can be efficiently computed in O(LP) time. Note that in order to 
construct the profile of a subset of sequences extracted from a multiple alignment, 
those columns that contain only indels in that subset must be deleted. The set of such 
columns in both profiles is therefore available as a side effect of profile construction, 
and this set immediately implies π–. It is a simple O(LP) procedure to compute ∆π 
from π– and π+. Note that SPa is a sum over columns, and there is a one-to-one 
correspondence between columns and edges in π. The change in SPa can therefore be 
computed as a sum over columns in ∆π, with a negative sign for edges from π–, 
reducing the time complexity from O(NLP) to O(N|∆π|). We now turn our attention to 
SPg. We say that a gap G intersects ∆π if and only if any indel in G is in a column in 
∆π, and denote by Γ the set of gaps that intersect ∆π. If a gap does not intersect ∆π, 
i.e. does not have an indel in a changed column, its contribution to SPg is unchanged. 
It therefore suffices to consider penalties for gaps in Γ, again with negative signs for 
edges from π–. The construction of Γ is straightforward in O(NLP) time. Finally, a sum 
over pairs in Γ is needed, reducing the O(N 

2) component to the smallest possible set 
of terms. 

Dimer approximation 

We next describe an approximation to SP that can be computed in O(NLP) time. 
Define a two-symbol alphabet {X, –} in which X represents any amino acid and – is 
the indel symbol. There are four dimers in this alphabet: XX, X–, –X and ––, which 
denote by no-gap, gap-open, gap-close and gap-extend respectively. Re-write a 
multiple alignment in terms of these dimers, adopting the convention that dimer ab 
composed of symbol a in column x–1 and symbol b in column x is written in column 
x. Now consider the contribution to SPg of an aligned pair of dimers, written as 
ab↔cd. Clearly XX↔X– adds a gap-open penalty; XX↔–X adds a gap-close (Figure 
11). To avoid double-counting, we will include only the penalty contribution of indels 
in the second column. Then XX↔X– adds a per-gap penalty, but XX↔–X adds zero 
because the second column does not contain a gap. External indels must be discarded; 
so, for example, ––↔–– adds zero. In fact, aligning two identical dimers always 
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contributes zero because any indel in the second column is found in both sequences 
and is therefore external. The contribution of all possible pairs of dimers is 
unambiguous, with the exception of –X↔––, which can add a per-gap or extend 
penalty (Figure 12). We approximate this case by assigning it a penalty of tg, where g 
is the default per-gap penalty and t is a tunable parameter, set to 0.2 by default. With 
this approximation, dimers can be treated like amino acids: the scores for each aligned 
pair of dimers forms a substitution matrix (Figure 13), and SPg can be computed by 
summing substitution scores over all pairs of sequences. We can now apply Equation 
26, re-interpreting the frequency vectors f as having 24 components (20 amino acids 
and four dimers), and compute the change in SP by considering only those columns in 
∆π. We find use of the dimer approximation to marginally reduce benchmark scores. 
By default, MUSCLE therefore uses the exact SP score for N ≤ 100 and the dimer 
approximation for N > 100, where the higher time complexity of the exact score 
becomes more noticeable. 

Evaluation of profile functions 
We have previously attempted a systematic comparison of profile functions [30]. The 
methodology used in that work demanded careful optimization of affine gap 
parameters for each function. This proved to be time-consuming and tedious, and we 
therefore tried the following alternative approach, inspired by the notion that a good 
profile function should be good at discriminating correctly aligned pairs of profile 
positions from incorrectly aligned pairs. The protocol begins with a set of pair-wise 
structural alignments. With the sequence of each structure as a query, we used PSI-
BLAST to search the NCBI non-redundant protein sequence database [43], giving a 
multiple sequence alignment (profile) for each structure. Note that we use the term 
profile in this context to mean the sequence alignment produced by PSI-BLAST, not 
the scoring matrix. Using the structural alignments as a guide, we then created a 
database in which columns from the PSI-BLAST profiles were aligned to each other, 
giving a large set of pairs of alignment columns that we consider to be correctly 
aligned (the "true" database, although there are undoubtedly misaligned sequences 
and hence some incorrect pairs). By selecting the same number of pairs of columns at 
random from structures in different FSSP families, we created a similar ("false") 
database of unrelated pairs. A profile function was evaluated by computing the score 
of each pair of columns in both the true and false databases, and then sorting the 
results in order of increasing score. The results can be displayed by reviewing the 
sorted list and, for each score S in the list, plotting the number of true pairs with score 
≤ S (x axis) against the number of false pairs with score ≤ S (y axis); we call the 
resulting graph a discrimination plot. Ideally, all true pairs would score higher than all 
false pairs, in which case the profile function would be a perfect discriminator and 
would always produce perfect alignments. A function that perfectly discriminates will 
appear as a Γ-shaped plot; a function that has no ability to discriminate will appear as 
a diagonal plot along the line x=y. If a function F has a discrimination plot that is 
always above another function G (i.e., DF(x) > DG(x) ∀x, where DF is the 
discriminator plot for F as a function of x), then F has a superior ability to 
discriminate true from false pairs compared with G. If the plots intersect, the situation 
is ambiguous and neither function is clearly superior. We used sets of structural 
alignments from [30] (PP) and [44] (PP2). PP contains 588 structure pairs with 
sequence identity ≤ 30%, z-score ≥ 15, RMSD ≤ 2.5Å and an alignment length of ≥ 
50 positions. These criteria were designed to select pairs of structures with low 
sequence identity and high structural similarity. PP2 contains 500 pairs selected from 
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the FSSP database [45] with ≤ 30% sequence identity, z-score ≥ 8 and ≤ 12, RMSD 
≤ 3.5Å and alignment length ≥ 50. The criteria for PP2 were designed to select 
challenging alignments with low sequence identity and relatively high structural 
divergence, leading to a high frequency of gaps and therefore, presumably, a stronger 
dependence on accurate identification of sequence similarity. Results on PP2 show the 
LE function to have higher discrimination than all other tested functions (historically, 
the LE function was designed by systematic trial and error using a wide range of 
different profile functions with feedback from discrimination plots). This is illustrated 
in Figure 14, in which the discrimination plot for LE on PP2 is compared with several 
other functions: PSP, LA, Yona and Levitt's [46], LAMA [47]. Using PP, we again 
find that LE is superior to LA (not shown), but the comparison with PSP is 
ambiguous as the discrimination plots intersect (Figure 15). A major advantage of this 
approach is that no gap penalties are required, with the result that once the databases 
have been constructed, a new function can be tested in seconds rather than the days or 
weeks that were needed with the earlier methodology. However, some caveats are in 
order. We are using PSI-BLAST as a gold standard for creating profiles, but PSI-
BLAST may introduce biases both due to its selection of sequences for inclusion in 
the profile and due to errors in alignments of those sequences to the query. If the 
profile function will be used to align PSI-BLAST profiles, then this is an appropriate 
experimental design. But in the case of multiple sequence alignment, where profiles 
are produced iteratively by the profile function itself, the results may not be directly 
applicable. We also note that any monotonic transformation of the profile function 
leaves the discriminator plot unchanged as it does not change the sort order of the 
scores. (A monotonic transformation is F' = m(F) where m(x) is a monotonically 
increasing function). However, a monotonic transformation may change the 
alignments produced by a profile function, so we can regard high discrimination as a 
necessary but not sufficient condition for a good profile function. One can turn this 
into a virtue by noting that the discrimination plot allows the relative probability of 
true versus false to be determined from a score. It is therefore possible to numerically 
determine a log-odds function from the discrimination plot, which can be evaluated 
by table look-up. Using discrimination plots for PP2, we found the optimal 
transformation for LE to be close to linear, in contrast to other functions we tried, 
including PSP (results not shown). This observation further encouraged us to explore 
the performance of LE in an MSA algorithm. Testing on multiple alignment 
benchmarks we find LE to give superior results on BAliBASE, but statistically 
indistinguishable results on other databases (results not shown). MUSCLE therefore 
uses LE as the default choice as it sometimes gives better results but has not been 
observed to give lower average accuracy on any of our tests. It is also useful to 
introduce a method with a distinctively different scoring scheme as an alternative that 
may give better results on some input data and may provide unique features for 
incorporation into jury or consensus systems. One drawback of LE is its relatively 
slow performance due to the need to compute a logarithm for each cell of the dynamic 
programming matrix. 

Complexity of MUSCLE 
The complexity of MUSCLE is summarized in Table 2. We assume LP = O(L + N), 
the e-string construction for the root alignment, and a fixed number of refinement 
iterations. 
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Results 
MUSCLE offers a variety of options that offer different trade-offs between speed and 
accuracy. In the following, we report speed and accuracy results for three sets of 
options: (1) the full MUSCLE algorithm including Stages 1, 2 and 3 with default 
options; (2) Stages 1 and 2 only, using default options (MUSCLE-prog); and (3) Stage 
1 only using the fastest possible options (MUSCLE-fast), which are as follows: FBinary 
is used as a distance measure (Equation 2), the PSP profile function is used, and 
diagonal finding is enabled.  

Alignment accuracy 

In Tables 3 and 4 we report the speed and accuracy of MUSCLE v3.3, CLUSTALW 
v1.82, Progressive POA, a recently published method that is claimed to be 10 to 30 
times faster than CLUSTALW for large alignments [48], and the MAFFT script 
FFTNS1 v3.82, the fastest previously published method known to us. On the advice 
of one of the authors of Progressive POA, we used command-line options selecting 
global alignment with truncated gap scoring (Catherine Grasso, personal 
communication). We report results both using distance matrices computed by BLAST 
(POA-blast) and using the distance method built into the program (POA). We use four 
sets of reference alignments: BAliBASE v2, PREFAB v3, SABmark v1.61, and a 
version of SMART from July 2000. The accuracy score is Q, the number of residue 
pairs correctly aligned divided by the length of the reference alignment. For more 
discussion of the reference data, assessment methodology and a comparison of 
MUSCLE with T-Coffee and NWNSI, the most accurate MAFFT script, see [2]. 

Execution speed 

To compare speeds for a larger number of sequences, we created a test set by using 
PSI-BLAST to search the NCBI non-redundant protein sequence database for hits to 
dienoyl-coa isomerase (1dci in the Protein Data Bank [49]), selecting the highest-
scoring 1,000 sequences. This set of sequences had average length 282, maximum 
length 454 and average pair-wise identity 20%. We aligned randomly chosen subsets 
of from 200 to 1,000 sequences with each program and noted the total execution time. 
In the case of 1,000 sequences, the resulting alignments had from 1,100 from 1,400 
columns, confirming that it is unrealistic to assume that LP is O(L). Results are shown 
in Figure 16. We have previously shown that MUSCLE-prog is faster than FFTNS1 
on a set of 5,000 sequences, for which we estimated that CLUSTALW would require 
approximately one year [2]. In this test, MUSCLE-fast is approximately 3× faster than 
FFTNS1 for 200 sequences, and 5× faster for 1,000 sequences. This trend continues 
for larger numbers of sequences (complete results not shown), showing that 
MUSCLE-fast has lower asymptotic complexity, due largely to the use of additive 
profiles for progressive alignment compared with the profile matrices constructed by 
FFTNS1. 

Conclusions 
MUSCLE demonstrates improvements in accuracy and reductions in computational 
complexity by exploiting a range of existing and new algorithmic techniques. While 
the design—typically for practical multiple sequence alignment tools—arguably lacks 
elegance and theoretical coherence, useful improvements were achieved through a 
number of factors. Most important of these were selection of heuristics, close 
attention to details of the implementation, and careful evaluation of the impact of 
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different elements of the algorithm on speed and accuracy. MUSCLE enables high-
throughput applications to achieve average accuracy comparable to the most accurate 
tools previously available, which we expect to be increasingly important in view of 
the continuing rapid growth in sequence data.  

Availability and requirements 
MUSCLE is a command-line program written in a conservative subset of C++. At the 
time of writing, MUSCLE has been successfully ported to 32-bit Windows, 32-bit 
Intel architecture Linux, Solaris, Macintosh OSX and the 64-bit HP Alpha Tru64 
platform. MUSCLE is donated to the public domain. Source code and executable files 
are freely available at http://www.drive5.com/muscle. 
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Tables 
 
Table 1. Complexity of CLUSTALW. 
Here we show the big-O asymptotic complexity of the elements of CLUSTALW as a 
function of L, the typical sequence length, and N, the number of sequences, retaining 
the highest-order terms in N with L fixed and vice versa. 
 
Step O(Space) O(Time) 

Distance matrix N
2
 + L N

2
L

2
 

Neighbor joining N
2 

N
4 

Progressive (one iteration) NLP + LP 
= NL + L

2 
NLP + LP

2
  

= N
2
 + L

2 

Progressive (total) NL + L
2
 N

3
 + NL

2
 

TOTAL N
2
 + L

2 
N

4
 + L

2
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Table 2. Complexity of MUSCLE. 
Here we show the big-O asymptotic complexity of the elements of MUSCLE as a 
function of L, the typical sequence length, and N, the number of sequences, retaining 
the highest-order terms in N with L fixed and vice versa. 
 
Step O(Space) O(Time) 

K-mer distance matrix N
2
 + L N

2
L 

UPGMA N
2 

N
2 

Progressive (one iteration) LP
2 

= NL + L
2 

LP
2 

= N
2
 + L

2 

Progressive (root alignment) NLP 

= N
2
 + NL 

NLP log N 

= N
2
 log N + NL log N 

Progressive (N iterations + root) N
2
 + NL + L

2
 N

3
 + NL

2 

Refinement (one edge) NLP + LP
2 

= N
2
 + L

2 
N

2
LP + LP

2 

= N
3
 + L

2 

Refinement (N edges) N
2
 + L

2 
N

4
 + NL

2
 

TOTAL N
2
 + L

2 
N

4
 + NL

2
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Table 3. Accuracy scores. 
The average accuracy, measured by the Q score, is reported for each method on each 
set of reference alignments. 
 

Method PREFAB BAliBASE SABmark SMART 

MUSCLE 0.648 0.896 0.430 0.856 

MUSCLE-prog 0.634 0.883 0.427 0.837 

FFTNS1 0.619 0.844 0.376 0.815 

MUSCLE-fast 0.616 0.849 0.396 0.813 

CLUSTALW 0.588 0.860 0.404 0.823 

POA-blast 0.577 0.839 0.352 0.788 

POA 0.576 0.834 0.280 0.797 
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Table 4. CPU times. 
The total CPU time required to create all alignments in each test set, measured in 
seconds on a 2.5 GHz Pentium 4 desktop computer. 
 

Method PREFAB BAliBASE SABmark SMART 

MUSCLE-fast 540 11 45 30 

FFTNS1 720 16 70 46 

MUSCLE-prog 3,000 52 429 180 

MUSCLE 11,000 81 1,500 560 

POA-blast 11,000 90 290 670 

CLUSTALW 15,000 160 210 480 

POA 24,000 130 380 880 
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Figure captions 
 

Figure 1. Progressive alignment. 
Sequences are assigned to the leaves of a binary tree. At each internal (i.e., non-leaf) 
node, the two child profiles are aligned using profile-profile alignment (see Figure 2). 
Indels introduced at each node are indicated by shaded background. 
 
Figure 2. Profile-profile alignment. 
Two profiles (multiple sequence alignments) X and Y are aligned to each other such 
that columns from X and Y are preserved in the result. Columns of indels (gray 
background) are inserted as needed in order to align the columns to each other. The 
score for aligning a pair of columns is determined by the profile function, which 
should assign a high score to pairs of columns containing similar amino acids. 
 
Figure 3. Gap penalties in the SP score 

This figure shows a multiple alignment of three sequences s, t and u. The SP score is 
the sum over all pairs of sequences of their pairwise alignment score. The contribution 
to the SP score from the pair (s, t) is computed by discarding columns in which both 
sequences have indels (arrows). Such indels are said to be external with respect to the 
pair. Gaps in the remaining columns (gray background) are assessed affine penalties g 
+ λe where g is the per-gap penalty, λ is the gap length, and e is the gap extension 
penalty. 
 
Figure 4. Position-specific gap penalties. 
An alignment of two profiles X and Y. Gaps in sequences t and u are embedded in X. 
Y contains a single sequence w. The gap in w (gray background) is inserted to align 
the profiles and is not part of Y. Consider the SP score for this alignment. We need 
not consider pairs of sequences in X as their scores are unchanged under all possible 
alignments of X to Y, leaving the inter-profile pairs (s, w), (t, w), (u, w) and (v, w). 
Note that there is no gap penalty for the pairs (u, w) and (v, w) as these pairs do not 
have gaps relative to each other. The remaining pairs (t, w) and (u, w) are assessed a 
penalty g + 3e for the gap in Y. The total over all pairs of open or close penalties due 
to a gap in Y is thus reduced in proportion to the fraction of sequences in X having a 
gap with the same open or close position. We incorporate this into the PSP score by 
using position-specific gap penalties b(x) and t(x). For example, b(x) in column 4 of X 
is half the default value because half of the sequences in X open a gap in that column. 
Note that there is no open penalty at the N-terminal and no close penalty at the C-
terminal. This causes terminal gaps to receive half the penalty of internal gaps. 
 
Figure 5. Tree comparison. 
Two trees are compared in order to identify those nodes that have the same branching 
orders within subtree rotation (white). If a progressive alignment has been created 
using to the old tree, then alignments at these nodes can be retained as the same result 
would be produced at those nodes by the new tree. New alignments are needed at the 
changed (black) nodes only. 
 
Figure 6. Neighbor-joining and UPGMA trees for progressive alignment. 
Here we show the same set of four sequences and the order in which they will be 
aligned according to a neighbor-joining tree (above) and a UPGMA tree (below). 
Notice that t and u are the most closely related pair, but (s, t) and (u, v) are 
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evolutionary neighbors. With neighbor joining, t and u are not aligned to each other 
until the root, in contrast to UPGMA, which aligns s and t as the first pair. 
 
Figure 7. Additive profiles. 
The profile functions in MUSCLE require amino acid frequencies for each column. 
Here we show the alignment of two profiles X and Y, giving a new profile Z. Note 
that the count nZ

i for amino acid i in a given column of Z is the sum of the counts in 
the child profiles, i.e. nZ

i = nX
i + nY

i. In terms of frequencies, this becomes f Zi = NX
 f 

X
i /N

Z + NY
 f 

Y
i /N

Z, where NX, NY, NZ are the number of sequences in X, Y and Z 
respectively. Therefore, given a suitable sequence weighting scheme, it is possible to 
compute frequencies in Z from the frequencies in X and Y. This avoids the step of 
building an explicit multiple alignment for Z in order to compute frequencies, as done 
in CLUSTALW and MAFFT. 
 
Figure 8. Occupancy frequencies in additive profiles. 

Here we show an alignment of profiles X and Y giving Z. A column C of indels 
(shaded background) has been inserted at position x in order to align X to Y. To 
compute the number of gap-extensions in column x of Z, three cases must be 
considered: (1) a gap-extension in the corresponding column of Y, (2) a gap-open in 
the preceding column of X, and (3) a gap-extension in the preceding column of X. By 
enumerating all such cases, it is straightforward to compute the occupancy 
frequencies in Z from the occupancy frequencies of X and Y, plus the alignment path. 
 
Figure 9. E-strings. 
(1) The effect of the e-string operator <3,-1,2> on the sequence MQTIF. A positive 
number n skips n letters, a negative number –n insert n indels. (2) The effect of 
applying two successive e-strings. In the last line, the result is expressed as a new e-
string applied to the original string. (3) We define multiplication on two e-strings as 
yielding the e-string that is equivalent to applying the two e-strings in order. (4) An 
alignment path is conventionally represented as a vector of edge types (M, D and I). 
In this example, MDMIMM, shown above a pairwise alignment, is the path that 
generates that alignment. The alignment can also be generated by a pair of e-strings 
(shown to the right). An alignment path is therefore equivalent to a pair of e-strings. 
 
Figure 10. Root alignment construction. 
Here we show the same progressive alignment as Figure 1. Each edge in the tree is 
labeled with the e-string for its side of the alignment at the parent node. The e-string 
needed to insert indels into a sequence in the root alignment can be determined by 
multiplying e-strings along the path to the root. For example, for sequence LSF, the 
root e-string is <3,–1,1>*<1,–1,2> = <1,–1,1,–1,1>. 
 
Figure 11. Dimers in the {X,–} alphabet. 
Gap penalties for the sequence pair (s, u) can be computed be considering all aligned 
pairs of dimers in the alphabet {X,–}, where X is any amino acid and – is the usual 
indel symbol. Four cases are highlighted. Note that an aligned pair of identical dimers 
never contribute a gap penalty as any indels in the dimers are necessarily external, as 
in the left-most example. 
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Figure 12. Problem dimer pair. 
The aligned dimer pair -X ↔ -- causes a problem because its gap penalty 
contribution cannot be computed without additional information. Note that the first 
column of indels is external; after this column is discarded, different penalties may be 
needed, as these two examples show. 
 
Figure 13. Dimer substitution matrix. 
This matrix specifies the contribution to the total gap penalty for a pair of sequences 
for each possible pair of aligned dimers. Here, g is the per-gap penalty, e is the gap-
extension penalty. The problem case -X ↔ -- is approximated as tg, where t is a 
tunable parameter. 
 
Figure 14. Discrimination plot for PP2. 
The x axis is the number of true column pairs with scores ≤ S for some value S, as a 
fraction of the total number of true pairs; the y axis is the number of false column 
pairs with scores ≤ S, as a fraction of the total number of false pairs. The databases 
were constructed from the PP2 test set. Shown are discrimination plots for the log-
expectation (LE), log-average (LA), Yona-Levitt (YL), LAMA, and profile sum of 
pairs (PSP) functions. The LE function shows higher discrimination over the entire 
range of scores than any other function we tested (complete results not shown). The 
poor performance of the "standard" PSP function is striking. PSP displays negative 
discrimination over some of its range where it falls below the diagonal (dashed line). 
 
Figure 15. Discrimination plot for PP. 
This is similar to Figure13, except that the database was generated from the PP test 
set. Here we see an ambiguous result as the discrimination plots for LE and PSP 
intersect. 
 
Figure 16. Execution time as a function of N. 
This plot shows the execution time as a function of N (number of sequences) for the 
tested alignment methods. Input data is from 200 to 1,000 sequences in increments of 
200. Average sequence length is 282, maximum length 454. 
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(1)        <3,–1,2>(MQTIF) = MQT-IF    
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   = <1,-1,5>(MQT-IF) 
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   = <1,-1,2,-1,2>(MQTIF) 
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