

COACH: profile-profile alignment of protein families using hidden Markov models

Robert C. Edgar1† and Kimmen Sjölander2

1195 Roque Moraes Drive, Mill Valley, CA 94941, USA. bob@drive5.com

† Corresponding author

2 Department of Bioengineering, University of California, Berkeley, CA 94720, USA. kimmen@uclink.berkeley.edu

ABSTRACT
Motivation
Alignments of two multiple sequence alignments, or statistical models of such alignments (profiles), have important
applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to
more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment
methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-
sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to
profile-profile alignment we call COACH, for Comparison Of Alignments by Constructing HMMs. COACH aligns two
multiple sequence alignments by constructing a profile hidden Markov model (HMM) from one alignment and aligning the
other to that HMM.

Results
We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and
Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that
COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen
parameter settings.

Availability
COACH is freely available, including source code, from: http://phylogenomics.berkeley.edu/COACH.

1. INTRODUCTION
1.1 Profiles and profile alignments
The construction of pairwise alignments of two protein sequences is a fundamental technique in computational biology. A
pairwise alignment of an uncharacterized protein with a sequence of known function or structure can help identify
homologous regions, from which inferences about function and structure can be made. A score or expectation value can be
computed from the alignment, giving a statistical measure of the relatedness of the two sequences. This can be used to dis-
criminate homologs from unrelated sequences and indicate the degree of functional or structural similarity that may be re-
liably inferred. Distantly related proteins may share a common fold and function, but their similarity can hard to detect from
primary sequence alone (Brenner et al., 1998). Multiple alignments of related proteins provide further information about the
family, indicating patterns of conservation or variation at each position. A profile is a statistical model of a multiple
alignment. Profiles typically contain the estimated probability of finding each amino acid type at each position, and may
include position-specific gap penalties. We distinguish three classes of pairwise alignment algorithms. Sequence-sequence
methods such as BLAST (Altschul et al., 1990) and FASTA (Pearson, 1990) use the two primary sequences alone. Profile-
sequence methods (Gribskov et al., 1988; Tatusov et al., 1994) such as PSI-BLAST (Altschul et al., 1997) and SAM-T98
(Karplus et al., 1998) align a query sequence to a profile. Recently, several profile-profile methods have been proposed
(Pietrokovski, 1996; Lyngso et al., 1999; Panchenko et al., 2000; Rychlewski et al., 2000; Yona and Levitt, 2002; von Öhsen
et al., 2003; Panchenko, 2003; Sadreyev and Grishin, 2003). These construct an alignment of two profiles, from which a
similarity score and pairwise alignment of the two query sequences can be derived. Improvements in both alignment accuracy
and homolog recognition have been reported for profile-profile methods over profile-sequence and sequence-sequence
methods. Profile-profile methods have been used in genome annotation and protein classification (e.g. Pawlowski et al.,
1999; Henikoff et al., 2000; Kunin et al., 2001; Pawlowski et al., 2001). Profile-profile alignment is also the iterated step in
progressive multiple alignment algorithms such as CLUSTALW (Thompson et al., 1994).

1.2 COACH: aligning a multiple sequence alignment to an HMM
In the following, we describe a new profile-profile algorithm we call COACH, for Comparison of Alignments by
Constructing HMMs. COACH aligns two multiple sequence alignments by estimating a profile HMM from one alignment
and aligning the other alignment to that HMM. COACH is the iterated step in SATCHMO, a progressive multiple sequence
alignment method that has been shown (Edgar and Sjölander, 2003a) to produce alignments of comparable quality to
CLUSTALW. We compare COACH to two recently published profile-profile methods: prof_sim (Yona and Levitt, 2002)
and COMPASS (Sandreyev and Grishin, 2003). We assess alignment accuracy by comparing sequence alignments produced

 1

http://phylogenomics.berkeley.edu/COACH

by these methods with structural alignments from the FSSP database (Holm and Sander, 1996).

1.3 Profile hidden Markov models
A profile HMM (Krogh et al., 1994; Eddy, 1996) is a graphical model of a protein family that emits a sequence of letters
representing amino acids. Each position (node) k in a profile HMM has a match state (Mk), insert state (Ik) and delete state
(Dk) (Figure 1). M states represent conserved positions, I states represent insertions relative to the consensus. M and I states
emit letters; D states are silent, allowing for gaps. Mk→Ik and Mk→Dk+1 transition probabilities correspond to scores for
opening a gap in the profile and the emitted sequence respectively; Dk→Dk+1 and Ik→Ik probabilities correspond to gap-
extend scores. Gap penalties are thus position-specific, and the associated transition probabilities can be estimated from
observed sequences.

1.4 Aligning an alignment to an HMM
Consider two multiple alignments, A and T. A has N sequences. Estimate an HMM from T. Run the HMM N times,
generating N sequences. Align those sequences to each other by placing letters emitted by a given model state in the same
column; call the resulting multiple alignment B. If A and B are identical (to within a trivial re-ordering of the sequences), we
say that the HMM generated A. In that case, we achieve an alignment (call it C) of A to T via the model in which the columns
of A and T are kept intact, as they must be if we trust that A and T are correct (Figure 2). Given this view, we can treat an
HMM as an emitter of alignments. For example, we can compute the probability P(A | HMM) that the model generates A, and
seek an optimal alignment of A to the HMM. Note that this differs from aligning the sequences individually to the model as
all letters in a given column of A must be emitted from the same state, whereas the optimal alignment of an individual
sequence might assign the letter in that column to a different state. If A is a good alignment, this may allow distantly related
sequences to be more accurately aligned to the model. To make this more formal, we define the following terms. The
template alignment (T) is the multiple sequence alignment from which the HMM is estimated. The input alignment (A) is the
multiple alignment that is to be aligned to the HMM. An output alignment (C) is an alignment of the input alignment to the
HMM or, equivalently, of the input alignment to the template alignment. A gapless sequence is a sequence in the input
alignment that has a residue in every column. A gapless sequence need not be present, but is helpful conceptually. An output
alignment is constructed by assigning each column in the input alignment to an emitter state in the HMM. Such an
assignment uniquely determines the path that a gapless sequence must take through the HMM; we call this path a route.
Given a route, a sequence with one or more gaps in the input alignment is uniquely constrained to take a related path, as
illustrated in Figure 2. The probability of a route, given the input alignment and an HMM, is obtained by multiplying the
probabilities of the paths implied by that route for each sequence in the input alignment. We construct a Viterbi output
alignment (see section 2.1) by finding a most probable route that generates the input alignment. We fully account for
transition probabilities associated with gapped positions in every sequence. Perhaps surprisingly, this turns out to be possible
without increasing the effective time complexity of our algorithm compared with other profile-profile dynamic programming
(DP) methods. We are thus able to exploit information about conserved patterns of gaps of different lengths, in contrast to
methods that treat a gap as the 21st letter and are invariant under a permutation of a column (e.g. COMPASS), and those that
apply position-independent affine gap penalties, ignoring internal gaps within a profile (e.g. prof_sim). Rather than
estimating the HMM from the template alignment, it would be more natural to estimate an HMM from both the input
alignment A and template alignment T, and align both A and T to that HMM. This would treat A and T symmetrically and
avoid the question of which alignment is chosen to be the template. However, our approach appears to be more
computationally tractable.

2. METHODS
2.1 Dynamic programming applied to a multiple alignment
Alignment of a sequence to an HMM is accomplished using the Viterbi algorithm (Bellman, 1957; Viterbi, 1967; Rabiner,
1989). The Viterbi algorithm finds a most probable path through the model that generates the input sequence, and relies on
recursion relations that express the probability of a most probable partial path in terms of paths with one less edge. By
developing analogous recursion relations for routes, we can extend the Viterbi algorithm to handle multiple alignments. We
introduce the term leg to refer to an edge in a route. For a given consecutive pair of columns in the input alignment, with
assignments of those columns to emitter states, the leg is the edge implied for a sequence that has no gaps in those columns.
A difficulty arises related to gaps in columns emitted by insert (I) states, as illustrated in Figure 3. Suppose we know the
probability of a most probable partial route that ends in state Ik and emits the input alignment up to column i–1. Now we wish
to compute the change in probability due to adding a leg that ends in the Ik state again, emitting column i. It is clear that this
adds an Ik→Ik edge for Seq1 in Figure 3, but the edge for Seq2 is undetermined by the information given because the
predecessor state for Seq2’s path is unknown (it could be Ik, Mk or Dk). We overcome this difficulty by (1) computing tables
that characterize the occurrence of gaps, and (2) introducing new DP matrices that track the leg by which a most probable
route enters a given insert state. This enables us to "trace back" to the start of an insert of any length both in the route (by
means of the new DP matrices) and in the input alignment (using the new gap tables) with an O(1) computation. We further
show that the gap tables can be efficiently computed by visiting each position in the input alignment once only. Thus, we

 2

create two different types of profile: an HMM for the template alignment, and a new type of profile for the input alignment.
This second type of profile includes observed residue frequencies at each position plus the frequencies of observed gaps with
all starting positions and lengths. The recursion relations are relatively complicated; we derive and state them in full in the
Appendix. As expected, they reduce to the familiar Viterbi algorithm in the case where the input alignment contains exactly
one sequence.

3. VALIDATION
3.1 Reference alignments
In earlier work (Edgar and Sjölander, 2003b), we assessed the alignment accuracy of 23 different profile-profile scoring
functions by comparing sequence alignments generated by those functions with 488 structural alignments from the FSSP
database. We demonstrated improved accuracy of profile-profile over profile-sequence and sequence-sequence methods, but
found no statistically significant difference between most of the scoring functions on this test set, which we call PP1. The
PP1 dataset is composed of regions selected for a high degree of structural alignability in order to reduce possible ambiguities
in the sequence alignment implied by a structural alignment. This was done by requiring the DALI structural alignment z-
score to be ≥ 15, root-mean square distance (RMSD) to be ≤ 2.5Å and exact agreement between FSSP and the CE structural
aligner (Shindyalov and Bourne, 1998) over a minimum of 50 consecutive positions. We speculate that these stringent
criteria, which tend to limit the number of gapped positions, produced a test set for which the detection of weak sequence
similarity is sufficient to produce high-quality alignments, making it relatively insensitive to possible performance
differences between alignment methods and parameters. For the present work, we therefore designed a new test set based on
criteria designed to include more structurally diverged proteins and hence more gaps. We call this new test set PP2. We
selected pairs of sequences from the FSSP having ≤ 30% identity, DALI z-score ≥ 8 and ≤ 12, RMSD ≤ 3.5Å and alignment
length ≥ 50. These criteria alone are sufficiently relaxed to allow matches between convergent folds and regions of similar
secondary structure, so we additionally required that the two sequences were homologous according to the SCOP database
(Murzin et al., 1995). To reduce redundancy, these pairs were filtered so that no two sequences aligned to a common third
sequence had greater than 30% identity. Finally, we selected 500 pairs at random from the remainder. We retained all
positions considered alignable by FSSP (agreement with CE was not required, in contrast to PP1). These alignments can
therefore be expected to contain regions upon which different structural aligners disagree, and within which consideration of
probable homology rather than atom coordinates alone may produce some shifts (Cline, 2000). We consider this a reasonable
price to pay in an attempt to improve the sensitivity of the reference data and see reason to suppose that our criteria might
bias alignments in favor of one sequence-based method over another. Alignments were created by PSI-BLAST from a release
of the NCBI non-redundant protein sequence database (Pruitt et al., 2003) downloaded in January 2003. We used blastpgp
version 2.2.5 with options –h 5 –e 0.1, keeping only alignments produced by the final iteration.

3.2 Quality scores
We use three quality scores for comparing a test alignment with a reference alignment. QDev (the developer's score) is the
number of correctly aligned pairs in the test alignment, tc, divided by the length of the reference alignment. This score has
been used, for example, by Thompson et al. (1994), who call it SP, Sauder et al. (2000), who refer to it as fD, and Sadreyev
and Grishin (2003) who call it Qdeveloper. QMod (the modeler's score) is tc divided by the length of the test alignment; this is
Sauder et al.'s fM, and Sadreyev and Grishin's Qmodeler. Each of these scores is useful in some applications, but also has
drawbacks. QDev does not penalize over-alignment (i.e., aligning residue pairs that are not structurally alignable); QMod does
not penalize under-alignment. Neither gives credit for regions in the test alignment that are shifted by one or a few positions
relative to the reference alignment; however, such regions may still be successfully used in homology modeling, and may
even be more "correct" when probable homology is considered rather than atom coordinates alone. Cline et al. (2002) have
proposed a score that is designed to address these issues; we call it QCline (the Cline score). It penalizes both over- and under-
alignment, and gives positive, although reduced, scores for positions with small shifts. QCline has a parameter ε that controls
the range of shifts that get positive scores; following Cline et al. we set ε = 0.2. All three scores have a maximum value of
one in the case of perfect agreement. QDev and QMod have a minimum of zero when no pairs are correctly aligned; QCline can
achieve negative values when there are many large shifts.

3.3 Other profile-profile methods
COMPASS is readily available in binary form. Dr. Golan Yona kindly provided a binary version of prof_sim. CLUSTALW
includes a profile-profile algorithm but was unable to process many of the alignments in our test set, apparently because its
sequence weighting scheme requires that all pairs of sequences in a profile have at least one position in common (T. J.
Gibson, personal communication). We were unable to obtain implementations of other published profile-profile methods.

3.4 COACH HMM estimation
HMM parameters were estimated from PSI-BLAST alignments as follows. Sequence weights were applied using the method
of Henikoff and Henikoff (1994). A match state was created for each column. Match state emission distributions were

 3

computed using the Dirichlet mixture prior given by Sjölander et al. (1996). Transition distributions were computed using the
default Dirichlet density prior in the HMMER package (Eddy, 2001).

3.5 Alignment boundary conditions
COMPASS and prof_sim construct local alignments. At least one published profile-profile method (von Öhsen et al., 2003)
is based on global alignment. In COACH we allow a choice of boundary conditions: local to both sequences, global to the
HMM but local to the sequence (semi-global), and global to both sequences. For database searching, local alignments are
often chosen; however semi-global searches are useful for domain recognition, and a requirement of global similarity may be
more appropriate if functional inferences are to be made for a multi-domain protein. COACH requires that one alignment be
chosen as the template and the other as the target. In the semi-global case, we choose the shorter profile as the template (we
found weak evidence, not presented here, that this gives more accurate alignments). With other boundary conditions we
found no feature of the alignments that predicted the better choice, including the log-odds scores relative to different null
models, and therefore choose arbitrarily.

3.6 COACH local alignment options
Local alignment requires special consideration. Adding a match state to a sub-path always reduces its probability; it is
therefore not possible to define local alignment by seeking the most probable sub-path. A common solution is to add terminal
insert states before and after the end of the main model and to allow transitions from the N-terminal insert state into any
match state and from any match state into the C-terminal insert state. Letters before the locally aligned region are emitted by
the N-terminal inserter; letters following the region are emitted by the C-terminal inserter. The self-loop transition probability
S of the terminal insert states controls the average length of a local alignment. If S is chosen to be the average M→M
probability, then, on average, local alignments will be extended only if there is a positive match state score for the additional
letter (because the cost of adding an additional match state is compensated by the reduced cost of making one less self-loop
in the terminal insert state). However, this design may not be optimal for alignments of distant homologs because match state
scores may be negative for residues that are plausible for a given position when sequence identity is low, causing a local
alignment to be truncated. A simple heuristic to correct for this effect is to adjust S: reducing the terminal self-loop
probability makes it more favorable to add match states to the local path, allowing weakly negative matches to extend the
local alignment. A more rigorous approach would be to re-estimate match state probabilities for different degrees of
divergence, e.g. as a function of sequence identity; however, this raises theoretical and practical issues beyond the scope of
this report. COACH offers three alternatives for local alignment. (1) Set S=SNull, the self-loop probability in a simple null
model consisting of a single insert state. SNull is chosen, following HMMER, such that the null model emits sequences of
length 350, the approximate average length of a protein. SNull is larger than the typical Mk→Mk+1 probability, so this setting
requires positive local match scores and can therefore be considered very conservative, tending to produce short alignments
of high confidence. (2) Set S=SAvgMM, the average Mk→Mk+1 probability. With this setting, any non-negative match score will
extend the alignment. (3) Set S=SDiv, a value tuned to the estimated divergence of the two profiles by optimizing on training
sets of different divergences. Moving from option (1) to (2) then (3) increases coverage (makes longer alignments) at the
expense of higher error rates (over-alignment). Option (2) is roughly equivalent to introducing what we have previously
called a center parameter (Edgar and Sjölander, 2003b) and Yona and Levitt (2002) have termed a shift, i.e. a constant value
added to all match scores, having the effect of tuning the local alignment length. It should be emphasized that these issues
with local alignment are found in most dynamic programming methods; they are not specific to COACH. Some profile HMM
methods, e.g. SAM and HMMER, use approximate solutions with a pre-determined length bias. In BLAST, the choice of
substitution matrix biases the length of the alignment; e.g., BLOSUM62 (Henikoff and Henikoff, 1992) has fewer positive
scores than BLOSUM30 and therefore tends to create shorter alignments.

3.7 Results
We aligned profiles (or sequences) derived from our reference sets PP1 and PP2 using COACH, prof_sim, COMPASS, PSI-
BLAST and BLAST. The average quality scores of the resulting alignments are summarized in Table 1. We find, in
agreement with previous studies, that profile methods clearly out-perform BLAST, which uses primary sequence only. The
improvements in score over BLAST are highly significant, with p-values computed by the Friedman rank test found to be
typically < 10–5. In most cases, profile-profile methods achieve higher scores than PSI-BLAST (a profile-sequence method),
but a trade-off is now apparent. For example, the lowest error rate, i.e. best QMod average score, is obtained with COACH
local S=SNull, at the expense of a coverage (QDev) that is lower than PSI-BLAST. Similarly, the best QDev is always obtained
by COACH semi-global, but at the cost of error rates that are higher than other choices. We observe similar rankings between
the methods and similar trade-offs between coverage and error on both sets of reference alignments (PP1 and PP2). As
expected, PP2 is much more challenging, with all methods producing much lower quality scores than on PP1. The statistical
significance of the differences in score between the different profile-profile methods vary from moderate to low, depending
on the parameter settings and chosen quality score.

 4

3.8 Execution speed
The recursion relations for COACH are relatively complicated. However, the algorithm can be implemented efficiently, and
the CPU time needed by COACH on our reference data was competitive with other methods. For example, COACH required
only 8 minutes to complete PP2 on a 2 GHz Pentium 4 PC, including HMM parameter estimation and construction of input
profiles, compared with 40 minutes for COMPASS. (Direct comparison with prof_sim is not possible as that method relies on
profiles previously constructed by PSI-BLAST).

4. DISCUSSION
We have presented a new algorithm, COACH, which computes an optimal alignment of a multiple sequence alignment to a
profile hidden Markov model. COACH is the iterated step in SATCHMO, a multiple sequence alignment algorithm that has
previously been shown to produce alignments of comparable accuracy to CLUSTALW. We introduced two novel features
which enable the Viterbi algorithm for an alignment of length L to be implemented with O(L2) time complexity, as follows.
New dynamic programming matrices track the predecessor state through which a most probable path enters a given insert
state. Gap tables store information about the frequencies of gaps of different lengths in the input alignment. These features
enable a "trace back" to the start of an insert of any length both in the HMM and in the alignment with an O(1) computation,
overcoming a difficulty in constructing the recursion relations due to gaps in inserted regions. The gap tables can be
constructed efficiently by induction. The alignment accuracy of COACH was compared with two recent methods: Yona and
Levitt's prof_sim, and Sadreyev and Grishin's COMPASS. Like COMPASS, but unlike prof_sim, COACH reduces to a
method expected to work well in the case where one or both profiles are derived from a single sequence. Accuracy was
assessed on two sets of reference alignments derived from the FSSP database. One set (PP1) was selected for a high degree of
structural alignability, the other (PP2) for more diverged pairs of structures. Multiple alignments were generated from each
selected FSSP sequence using PSI-BLAST, from which profiles were constructed. In agreement with previous studies, we
find that profile methods are clearly superior to BLAST, and generally superior to PSI-BLAST. However, in the latter case,
differences in performance are smaller, and vary according to parameter settings and the chosen measure of alignment
quality. On both PP1 and PP2, on average, COACH gave the best coverage (with semi-global boundary conditions) and the
fewest errors (with local boundary conditions and a suitably chosen null model). However, differences in quality score were
not statistically significant in some cases. We conclude that COACH is competitive in accuracy and speed with other
available profile-profile methods. We suggest that it is useful to have a choice of boundary conditions, and perhaps also a
means to select increased coverage or reduced error rates when using local alignment.

ACKNOWLEDGMENTS
The authors thank Melissa Cline, Sean Eddy and Kevin Karplus for helpful discussions.

 5

A. APPENDIX
A.1 Viterbi recursion relations
For brevity, we develop the Viterbi recursion relations for typical model nodes and typical columns without considering
boundary cases at the beginning and end of the model and of the input alignment; these are easily determined for a given
model architecture and are used, for example, to choose local versus global alignments. We use the following notation.

 A The input alignment, i.e., the alignment to be aligned to the HMM.
 N Number of sequences in A.
 L Number of columns in A.
 Ai The ith column of A, i=1...L.
 aiv Number of letters of type v in Ai.
 A{i} The first i columns of A.
 Q, R, q, r HMM states.
 t(QR) Log-odds transition score for Q→R.
 e(R, v) Log-odds emission score of letter v in R.
 π(R, i) A most probable route that emits A{i} and assigns state R to column i.
 πs(R, i) The path of sequence s implied by π(R, i).
 σ(πs(R, i)) The log-odds score of πs.

Here, a log-odds score is bit score, i.e. log2(P) for a given probability P. We define:

 σ(π(R, i)) = ∑s σ(πs(R, i)). (1)

This is the log-odds score of a most probable route that generates the input alignment through column i and assigns state R to
that column. We define the leg score λ for column i given two states Q and R connected by an edge Q→R as:

 λ(QR, i+δR) = σ(π(Q, i)) – σ(π(R, i+δR)), (2)

where δR = 1 if R is an emitter state, δR = 0 otherwise. The leg score is the incremental cost of adding a QR leg to a most
probable route. If λ(QR, i) can be calculated for all Q, R and i, this gives the Viterbi recursion relations:

 σ(π(R, i+δR)) = maxQ {σ(π(Q, i)) + λ(QR, i+δR)} (3)

The leg score can be expressed as an emission term ε and a transition term τ:

 λ(QR, i) = ε(QR, i) + τ(QR, i) (4)

If R is a delete state, ε is zero, otherwise:

 ε(QR, i) = ∑v aiv e(R, v). (5)

The transition score τ can be expressed as:

 τ(QR, i) = ∑s t(qrs), (6)

where qrs is the edge, if any, implied for sequence s by leg QR. If no edge is implied, t(qrs) is understood to be zero. In many
cases, qrs can be deduced from the leg type by looking at column i and the previous column i–1 to see if there is a gap or
letter in those positions, as shown in Table 2.

We define the following occupancy vectors over the input alignment. Values are the number of sequences that have the given
contents in columns i and, if applicable, i–1.

 Gi Gap in column i. (7)
 Li Letter in column i. (8)
 LLi Letter in columns i–1 and i. (9)
 GGi Gaps in columns i–1 and i. (10)

 6

 LGi Letter in column i–1, gap in column i. (11)
 GLi Gap in column i–1, letter in column i. (12)

These vectors enable us to calculate τ(QR, i) for all leg types except those for which q=? in Table 2. For example, by
considering cases 1–4, it follows that:

 τ(Mk–1Mk, i) = LLi t(Mk–1Mk) + GLi t(Dk–1Mk) + LGi t(Mk–1Dk) + GGi t(Dk–1Dk). (13)

Similarly,

 τ(MkIk, i) = LLi t(MkIk) + GLi t(Dk–1Ik) (14)

 τ(Mk–1Dk, i) = Li t(Mk–1Dk) + Gi t(Dk–1Dk) (15)

 τ(Dk–1Mk, i) = Li t(Dk–1Mk) + Gi t(Dk–1Dk) (16)

 τ(DkIk, i) = Li t(DkIk) (17)

 τ(Dk–1Dk, i) = N t(Dk–1Dk). (18)

We next consider the IkIk leg shown in Figure 4. We assume that the Ik state was entered via Mk, and denote by C the first
column assigned to the Ik state. If there is a continuous series of gaps that extends exactly from column C to column i–1, as in
Seq3, we can see that this implies an Mk→Ik edge. Given that we have a sequence exhibiting case 10, we know that there is a
gap of length ≥ 1 that ends in column i–1. The edge type is determined by the length of that gap. Let c = i–C–1; then the
possible scenarios are:

 Gap length = c, edge is Mk→Ik,
 Gap length < c, edge is Ik→Ik,
 Gap length > c, edge is Dk→Ik.

We now define the following gap matrices. Values in these matrices are the number of sequences that have the given type of
gap.

 BEi[c] Gaps of length = c ending in column i. (19)
 BLi[c] Gaps of length < c ending in column i. (20)
 BGi[c] Gaps of length > c ending in column i. (21)

Given that we know that the insert state was entered via the match state and the column number C assigned to that leg, by
considering cases 9 and 10 we can express the transition score as:

 τ(IkIk, i) = (LLi + BLi–1[c]) t(IkIk) + BEi–1[c] t(MkIk) + BGi–1[c] t(DkIk). (22)

Now suppose that the insert state was entered via the delete state, as shown in Figure 5. As this example illustrates, the
scenarios are now:

 Gap length < c, edge is Ik→Ik,
 Gap length ≥ c, edge is Dk→Ik.

The transition score is therefore:

 τ(IkIk, i) = (LLi + BLi–1[c]) t(IkIk) + BGi–1[c–1] t(DkIk). (23)

We introduce two new dynamic programming matrices that track the leg entering a given insert state. Nk[i] is the column
number of the first column to be assigned to Ik in π(R, i). Sk[i] is the last state prior to Ik in π(R, i). The recursion relations for
these matrices depend on the leg type added in an iteration, as follows.

 7

 Leg Nk[i] Sk[i]
 MkIk i Mk
 DkIk i Dk
 IkIk Nk[i–1] Sk[i–1]

We can then calculate c as:

 c = i – Nk–1[i–1]. (24)

This gives us an O(1) calculation of τ(IkIk, i):

 if Sk[i–1] is Mk then

 τ(IkIk, i) = (LLi + BLi–1[c]) t(IkIk) + BEi–1 [c] t(MkIk) + BGi–1[c] t(DkIk)
else
 τ(IkIk, i) = (LLi + BLi–1[c]) t(IkIk) + BGi–1[c–1] t(DkIk)
endif. (25)

The transition scores for the remaining legs types can be obtained through similar reasoning. We need to introduce one more
gap matrix: BT[i, j] is the number of sequences with a gap that includes columns i and j. Note that for any three columns a, b,
c such that a ≤ b ≤ c, the number of gaps that include a and b but not c is:

 BT[a, b] – BT[a, c]. (26)

Also, the number of gaps that include b and c but not a is:

 BT[b, c] – BT[a, c]. (27)

This leads to the following calculations for IkMk and IkDk legs (here, C = Nk–1[i–1]):

 if Sk[i–1] is Mk then

 τ(IkMk, i) = (LLi + BLi–1[c]) t(Ik–1Mk) + BEi–1[c] t(Mk–1Mk) + BGi–1[c] t(Dk–1Mk) +
 (BT[C, i] – BT[C–1, i]) t(Mk–1Dk) + (Gi – BT[C, i]) t(Ik–1Dk) + BT[C, i] t(Dk–1Dk)
else
 τ(IkMk, i) = (LLi + BLi–1[c]) t(Ik–1Mk) + BGi–1[c–1] t(Dk–1Mk) + (Gi – BT[C, i]) t(Ik–1Dk) +
 BT[C, i] t(Dk–1Dk)
endif, (28)

if Sk[i–1] is Mk then
 τ(Ik–1Dk, i) = BT[C, i] t(Dk–1Dk) + (Ri + BT[i, i] – BT[C, i]) t(Ik–1Dk) +
 (BT[C, i] – BT[C–1, i]) t(Mk–1Dk)
else
 τ(IkDk, i) = BT[C, i] t(Dk–1Dk) + (Ri + BT[i, i] – BT[C, i]) t(Ik–1Dk)
endif. (29)

We now have O(1) expressions for the transition scores of all leg types which, via Equations (3-6), give the recursion
relations for the Viterbi algorithm.

BE can be constructed using the following procedure. Create an L×L matrix and initialize all entries to zero. Traverse each
sequence in the input alignment from left to right, maintaining a counter c. If a position i contains a gap, add one to c;
otherwise add one to BEi[c] and set c to zero. To construct BL, we start from its definition (20), which can be expressed as:

 BLi[c] = ∑ x < c BEi[x]. (30)

This implies the following recursion relation:

 BLi[0] = 0,

BLi[c+1] = BLi[c] + BEi[c]. (31)

For BG, we can exploit the fact that the total number of gaps ending in column i is GLi–1:

 8

 GLi–1 = BLi[c] + BEi[c] + BGi[c], ∀c,i. (32)

Rearranging,

 BGi[c] = GLi–1 – BLi[c] – BEi[c]. (33)

Finally we can compute BT by applying Equation (26) to two consecutive columns:

 BT[i, i] = Gi,

BT[i, j +1] = BT[i, j] – BGj[j – i]. (34)

A.2 Complexity
The time and space complexity of our Viterbi algorithm is O(L2). Profile construction, both for the HMM and for the gap
matrices and residue frequencies needed for the input alignment, can be accomplished in O(LN) time and O(L) space. Despite
the formidable appearance of the recursion relations, the complexity is therefore comparable with traditional profile-profile
alignment methods.

A.3 Unaligned regions
Columns in the input alignment may be marked as containing positions that are not alignable due to structural information,
low score for those positions, or other evidence (Altschul, 1998; Edgar and Sjölander, 2003a). Such columns should never be
assigned to a match state—if they cannot be aligned to each other, they cannot be aligned to a profile position. We therefore
require zero probability for such letters to be emitted by a match state, forcing unaligned columns to be assigned to insert
states. It is advantageous to compress each unaligned region into a single column-like object that we call a pillar. We define a
pillar to be either an aligned column or a maximal consecutive series of unaligned columns. Expressed in the form of pillars,
an input alignment is transformed into a new data structure of equal or shorter length. The reduced length can significantly
reduce memory use and speed due to the O(L2) complexity of our Viterbi algorithm. If no regions are marked as unaligned,
this transformation has no effect. It is straightforward to develop recursion relations for pillars similar to those we have
derived here for columns.

 9

TABLES

Reference set PP1 PP2
Quality score

Algorithm
QDev QCline QMod QDev QCline QMod

COACH semi-global 0.787 0.787 0.751 0.311 0.303 0.311
prof_sim 0.787 0.795 0.785 0.307 0.346 0.476
COACH global 0.780 0.779 0.779 0.288 0.278 0.301
COACH local S=SDiv 0.756 0.767 0.748 0.229 0.262 0.391
COMPASS 0.740 0.763 0.783 0.257 0.312 0.492
COACH local S=SavgMM 0.667 0.712 0.796 0.171 0.234 0.580
COACH local S=SNull 0.661 0.708 0.798 0.163 0.226 0.590
PSI-BLAST 0.733 0.758 0.768 0.231 0.265 0.383
BLAST 0.536 0.592 0.678 0.100 0.110 0.214

Table 1. Alignment quality scores
This table gives the mean developer, Cline and modeler scores for the tested algorithms on our two sets of reference alignments, PP1 and
PP2. For comparison, PSI-BLAST (profile-sequence) and BLAST (sequence-sequence) scores are also shown. As expected, profile-profile
methods generally show a small improvement over PSI-BLAST. In both reference sets, coverage is maximized (high developer score) by
choosing COACH semi-global, errors are minimized (high modeler score) by COACH local S=SNull. We observe the expected trade-off
between coverage and error produced by adjusting the null model self-loop probability S. Note, for example, that the low error rate of
COACH local S=SNull comes at the expense of lower coverage than PSI-BLAST.

Case Column Leg Edge
 i–1 i Q R q r
1 X X Mk–1 Mk Mk–1 Mk
2 – X Mk–1 Mk Dk–1 Mk
3 X – Mk–1 Mk Mk–1 Dk
4 – – Mk–1 Mk Dk–1 Dk
5 X X Mk Ik Mk Ik
6 – X Mk Ik Dk–1 Ik
7 X – Mk Ik none
8 – – Mk Ik none
9 X X Ik Ik Ik Ik
10 – X Ik Ik ? Ik
11 X – Ik Ik none
12 – – Ik Ik none
13 X X Ik–1 Mk Ik–1 Mk
14 – X Ik–1 Mk ? Mk
15 X – Ik–1 Mk Ik–1 Dk
16 – – Ik–1 Mk ? Dk
17 * X Mk–1 Dk Mk–1 Dk
18 * – Mk–1 Dk Dk–1 Dk
19 * X Ik–1 Dk Ik–1 Dk
20 * – Ik–1 Dk ? Dk
21 * X Dk–1 Mk Dk–1 Mk
22 * – Dk–1 Mk Dk–1 Dk
23 * X Dk Ik Dk Ik
24 * – Dk Ik none
25 * * Dk–1 Dk Dk–1 Dk

Table 2. Edge type implied by leg type and gaps.
For each leg type QR, the table shows the edge type qr implied for a sequence given that it contains a letter (X) or gap (–) in the columns
assigned to Q and R. A star (*) indicates that the edge can be deduced without knowing whether there is a gap. A question mark (?)
indicates that the q state for the sequence cannot be deduced without further information; these cases arise when a gap assigned to an insert
state. In cases marked none, no new edge is implied by the leg. Cases are numbered for reference in the text.

 10

FIGURES

Dk

Mk

Ik

Dk+1

Mk+1

Figure 1. Two consecutive nodes k and k+1 in a profile HMM.
Letters represent states, arrows represent transitions. Match (M) and insert (I) states emit residues; delete (D) states are silent. Insert state
Ik+1 and transitions out of Mk and Dk are not shown.

Figure 2. Example alignment of two multiple alignments via an HMM.
We start from two alignments, A and T. An HMM is estimated from T (top panel). In this example, we create a match state from each
column (dotted arrows). A is then aligned to the HMM (middle panel) by assigning columns in A to emitter states in the model (solid
arrows). The result is the output alignment C (bottom panel), in which columns of A and T are preserved intact. A column of gaps is
inserted into T if one or more sequences in A visit an insert state; a column of gaps is inserted into A if all sequences visits a delete state.
The first sequence in A, QDW, is a gapless sequence. It takes path D1→M2→I2→M3, which by definition is the route. The second
sequence, Q–W, takes path D1→M2→M3. The path taken by a sequence is uniquely determined given the route and the location of gaps in
that sequence as it appears in A. An optimal alignment is determined by finding a route that maximizes the probability of C, which is
computed by multiplying the probabilities of the paths for each sequence in A.

 11

Route ? → Ik → Ik
Column i–2 i–1 i
Seq1 S E Q
Seq2 S - Q

Figure 3. Gap in a column assigned to an insert state.
In this example, two consecutive columns i–1,i in the input alignment are assigned to insert state Ik in the model. Seq1 has letters in both
columns; this means that Seq1 must take a self-loop in that insert state. Seq2 has a gap in the first of these columns, which implies that
Seq2 makes one less visit to the insert state than Seq1. Columns i–1,i thus imply an edge Ik →Ik for Seq1. However, it is not possible to
deduce the edge induced for Seq2 without looking further back in the path. If column i–2 is assigned to Ik, then a self-loop is also implied
for Seq2. However, if column i–2 is assigned to Mk, then an Mk →Ik edge is implied. A similar situation arises whenever a gap appears in a
column assigned to an insert state, and presents a difficulty in developing the recursion relations.

Route Mk → Ik → Ik →
Last leg Ik → Ik
Column C i–1 i Edge implied by last leg
Seq1 S K E - Q Ik→Ik
Seq2 S - K - Q Ik→Ik
Seq3 S - - - Q Mk→Ik
Seq4 - - - - Q Dk→Ik

Figure 4. A route with sequences exhibiting case 10.
For each sequence, the edge induced by the last leg is indicated.

Route Dk → Ik → Ik →
Last leg Ik → Ik
Column C i–1 i Edge implied by last leg
Seq1 S - K E - Q Ik→Ik
Seq2 S - - K - Q Ik→Ik
Seq3 S - - - - Q Dk→Ik
Seq4 - - - - - Q Dk→Ik

Figure 5. A route with sequences that exhibit case 10.
This differs from Figure 4 in that the insert state is entered via the delete state rather than the match state.

 12

REFERENCES
Altschul,S.F., Gish,W., Miller,W., Myers,E.E., Lipman,D.J. (1990), Basic local alignment search tool, J. Mol. Biol. 215, 403-

410.
Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W., Lipman,D.J. (1997), Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs, Nucl. Acids Res. 25, 3389-3402.
Bellman,R (1957), Dynamic Programming, Princeton University Press, Boston.
Brenner,S.E., Chothia,C. and Hubbard,T.J.P. (1998), Assessing sequence comparison methods with reliable structurally

identified distant evolutionary relationships, Proc. Natl. Acad. Sci. USA 95, 6073-6078.
Cline,M. (2000), Protein sequence alignment reliability: prediction and measurement, PhD thesis, University of California

Santa Cruz.
Cline,M., Hughey,R., and Karplus,K. (2002), Predicting reliable regions in protein sequence alignments, Bioinformatics

18(2), 306-14.
Eddy,S.R. (1996), Hidden Markov models, Curr. Opin. Struct. Biol., 6(3), 361-5.
Eddy,S.R. (2001), HMMER: Profile hidden Markov models for biological sequence analysis, http://hmmer.wustl.edu/.
Edgar,R.C. and Sjölander,K. (2003a), SATCHMO: simultaneous alignment and tree construction using hidden Markov

models, Bioinformatics 19(11), 1404-1411.
Edgar,R.C. and Sjölander,K. (2003b), A comparison of scoring functions for protein sequence profile alignment,

Bioinformatics (to appear), preprint at: http://www.drive5.com/papers/profprofacc.pdf.
Gribskov,M., Homyak,M., Edenfield,J., Eisenberg,D. (1988), Profile scanning for three-dimensional structural patterns in

protein sequences, Comput. Appl. Biosci. 4(1), 61-66.
Henikoff,J.G., Greene,E.A., Pietrokovski,S. and Henikoff,S. (2000), Increased coverage of protein families with the blocks

database servers, Nucl. Acids Res. 28, 228-230.
Henikoff,S. and Henikoff,J.G. (1992), Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. USA 89,

10915–19.
Henikoff.S. and Henikoff,J.G. (1994), Position-based sequence weights, J. Mol. Biol. 243(4), 574-8.
Holm,L. and Sander,C. (1996), Mapping the protein universe, Science 273, 595-602.
Karplus,K., Barrett,C. and Hughey,R. (1998), Hidden Markov models for detecting remote protein homologies,

Bioinformatics 14(10), 846-56.
Krogh,A., Brown,M., Mian,I.S., Sjolander,K., and Haussler.D. (1994), Hidden Markov models in computational biology.

Applications to protein modeling, J. Mol. Biol. 235(5), 1501-31.
Kunin,V., Chan,B., Sitbon,E., Lithwick,G. and Pietrokovski,S. (2001), Consistency analysis of similarity between multiple

alignments: prediction of protein function and fold structure from analysis of local sequence motifs, J. Mol. Biol. 307(3),
939-949.

Lyngso,R.B., Pedersen,C.N., Nielsen,H. (1999), Metrics and similarity measures for hidden Markov models, Proc. Int. Conf.
Intell. Syst. Mol. Biol. 1999, 178-86.

Panchenko,A.R., Finding weak similarities between proteins by sequence profile comparison (2003), Nucl. Acids Res. 31(2),
683-689.

Panchenko,A.R., Marchler-Bauer,A. and Bryant,S.H. (2000), Combination of threading potentials and sequence profiles
improves fold recognition, J. Mol. Biol. 296, 1319-1331.

Pawlowski,K., Rychlewski,L., Zhang,B. and Godzik,A. (2001), Fold predictions for bacterial genomes, J. Struct. Biol. 134,
219-231.

Pawlowski,K., Zhang,B., Rychlewski,L. and Godzik,A. (1999), The Helicobacter pylori genome: from sequence analysis to
structural and functional predictions, Proteins 36, 20-30.

Pearson,W.R. (1990), Rapid and sensitive sequence comparison with FASTP and FASTA, Meth. Enzym. 183, 63-98.
Pietrokovski,S. (1996), Searching databases of conserved sequence regions by aligning protein multiple-alignments, Nucl.

Acids Res. 24(19), 3836-3845.
Pruitt,K.D., Tatusova,T., Maglott,D.R. (2003), NCBI Reference Sequence project: update and current status, Nucl. Acids Res.

31(1), 34-37.
Rychlewski,L., Jaroszewski,L., Li,W., Godzik,A. (2000), Comparison of sequence profiles, strategies for structural

predictions using sequence information, Protein Sci. 9, 232-241.
Rabiner,L.R. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77,

257-286.
Sadreyev,R. and Grishin,N. (2003), COMPASS: A tool for comparison of multiple protein alignments with assessment of

statistical significance, J. Mol. Biol. 326, 317-36.
Sauder,J.M., Arthur,J.W., Dunbrack,R.L. (2000), Large-scale comparison of protein sequence alignments with structure

alignments, Proteins 40, 6-22.
Shindyalov,I.N., Bourne,P.E. (1998), Protein structure alignment by incremental combinatorial extension (CE) of the optimal

path, Protein Eng. 11(9), 739-747.

 13

http://hmmer.wustl.edu/
http://www.drive5.com/papers/profprofacc.pdf

 14

Sjolander,K., Karplus,K., Brown,M., Hughey,R., Krogh,A., Mian,I.S. and Haussler,D. (1996), Dirichlet mixtures: a method
for improving detection of weak but significant protein sequence homology, Comput. Appl. Biosci. 12(4), 327-45.

Tatusov,R.L., Altschul,S.F. and Koonin,E.V. (1994), Detection of conserved segments in proteins: iterative scanning of
sequence databases with alignment blocks, Proc. Natl. Acad. Sci. USA 91, 12091-95.

Thompson,J.D., Higgins,D.G., and Gibson,T.J. (1994), CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucl. Acids
Res., 22, 4673-80.

Thompson,J.D., Plewniak,F. and Poch,O. (1999), A comprehensive comparison of multiple sequence alignment programs,
Nucl. Acids Res., 27(13), 2682-90.

Viterbi,A.J. (1967), Error bounds for convolutional codes and an asymptotically optimal decoding algorithm, IEEE Trans.
Info. Theory, IT-13, 260-269.

von Öhsen,N., Sommer,I. and Zimmer,R. (2003), Profile-profile alignment, a powerful tool for protein structure prediction,
Proc. Pacific Symp. Biocomp. 2003, 252-63.

Yona,G. and Levitt,M. (2002), Within the twilight zone: a sensitive profile-profile comparison tool based on information
theory, J. Mol. Biol. 315, 1257-75.

	COACH: profile-profile alignment of protein families using hidden Markov models
	1. INTRODUCTION
	2. METHODS
	3. VALIDATION
	4. DISCUSSION
	ACKNOWLEDGMENTS
	A. APPENDIX
	TABLES
	This table gives the mean developer, Cline and modeler scores for the tested algorithms on our two sets of reference alignments, PP1 and PP2. For comparison, PSI-BLAST (profile-sequence) and BLAST (sequence-sequence) scores are also shown. As expecte
	FIGURES
	REFERENCES

