
Local homology recognition and distance
measures in linear time using compressed
amino acid alphabets
Robert C. Edgar*

195 Roque Moraes Drive, Mill Valley, CA 94941, USA

Received October 23, 2003; Revised November 12, 2003; Accepted November 25, 2003

ABSTRACT

Methods for discovery of local similarities and
estimation of evolutionary distance by identifying k-
mers (contiguous subsequences of length k) com-
mon to two sequences are described. Given
unaligned sequences of length L, these methods
have O(L) time complexity. The ability of com-
pressed amino acid alphabets to extend these
techniques to distantly related proteins was investi-
gated. The performance of these algorithms was
evaluated for different alphabets and choices of k
using a test set of 1848 pairs of structurally align-
able sequences selected from the FSSP database.
Distance measures derived from k-mer counting
were found to correlate well with percentage identity
derived from sequence alignments. Compressed
alphabets were seen to improve performance in
local similarity discovery, but no evidence was
found of improvements when applied to distance
estimates. The performance of our local similarity
discovery method was compared with the fast
Fourier transform (FFT) used in MAFFT, which has
O(L log L) time complexity. The method for achiev-
ing comparable coverage to FFT is revealed here,
and is more than an order of magnitude faster. We
suggest using k-mer distance for fast, approximate
phylogenetic tree construction, and show that a
speed improvement of more than three orders of
magnitude can be achieved relative to standard
distance methods, which require alignments.

INTRODUCTION

Biological databases are growing exponentially, and algo-
rithms that minimize processor time and memory require-
ments are becoming increasingly important. Many of the
commonly used sequence comparison algorithms are based on
pairwise alignments. Database search methods such as
BLAST (1) attempt to discriminate related from unrelated
sequences by computing expectation values from local
alignments. Clustering algorithms such as UPGMA (2) and
neighbor-joining (3) typically use a distance measure that is a

function of the pairwise identity computed from an alignment.
Progressive multiple alignment algorithms such as
CLUSTAL_W (4) ®rst perform clustering to create a binary
tree and then construct one pairwise alignment of two pro®les
for each internal node of the tree. Pairwise alignments are
generally constructed using dynamic programming algorithms
that have time complexity O(L2) in the sequence length L
(reviewed in 5). In this study, we combine two techniques, k-
mer lookup and compressed alphabets, to achieve reductions
in the time and space complexity of pairwise alignment. We
describe how local similarities between two sequences (one or
both of which may be a pro®le) can be identi®ed with high
reliability in O(L) time, and show how this can improve
alignment speed with negligible reduction in accuracy. We
also explore a method that estimates the pairwise identity of
two unaligned sequences in O(L) time.

Compressed alphabets

A compressed alphabet `C' of size N is a partition of the
standard 20-letter amino acid alphabet `A' into N disjoint
subsets (classes) containing similar amino acids. Several
methods for constructing such alphabets have been proposed.
Li et al. (6) created two sets of alphabets by seeking to
maximize a similarity score derived from the BLOSUM62
matrix (7). A heuristic search procedure inspired by the Monte
Carlo algorithm was used, yielding two sets of alphabets that
we call Li-A(N) and Li-B(N), where N is the number of
classes. A class in Li-B(i) is guaranteed to be a subset of a
class in Li-B(j) if i > j; in Li-A alphabets this is not the case: a
class may split as N decreases, a phenomenon the authors call
interlacing. For example, Li-A(5) has a class ILMV, while
Li-A(4) has a class ILV; note that M has split out of the class
despite the reduced number of classes. Solis and Rackovsky
(8) minimized the information loss induced in the amino acid
sequence and backbone conformation of known structures,
again using a Monte Carlo search; we call their alphabets
Solis-D(N) and Solis-G(N) [D = DSSP, G = GMBR; for
de®nitions see (8)]. Murphy et al. (9) used a heuristic greedy
algorithm based on correlation coef®cients derived from
BLOSUM50, giving alphabets we call Murphy(N). In related
work, Taylor (10) presented an early analysis of amino acid
groups in relation to alignments, and Wu and Brutlag (11)
identi®ed conserved amino acid groups in multiple sequence
alignment databases; however, these groups are not required
to be disjoint. In this work, the central observation is that

*Email: bob@drive5.com

380±385 Nucleic Acids Research, 2004, Vol. 32, No. 1
DOI: 10.1093/nar/gkh180

Nucleic Acids Research, Vol. 32 No. 1 ã Oxford University Press 2004; all rights reserved

Published online January 16, 2004

identity is better conserved in a compressed alphabet (Fig. 1).
Pairs of related sequences always have higher or equal
identity, and hence tend to have more common k-mers, in an
alphabet with N <20 than in A. If the alphabet is chosen such
that there are high probabilities of intra-class substitution and
low probabilities of inter-class substitution, then we might
expect that the extent of identity in related regions could be
usefully extended while limiting the increase in contiguous
identities due to chance.

METHODS

Optimal alphabets from information theory

Substitution matrices can be viewed from an information
theory perspective (12). The similarity score sab of amino
acids a, b is understood to be derived from the joint probability
p(a, b) of a and b being aligned to each other and the
background probability p(a), as follows:

sab = log [p(a, b)/p(a) p(b)] 1

Gavin Crooks (personal communication) has suggested that
the evolutionary process implied by the substitution matrix
should minimize the average information loss in a sequence,
with the goal of making related sequences maximally similar
in the resulting alphabet. This is achieved by maximizing the
entropy of the compressed substitution matrix, de®ned as
follows:

E (C) =
P
i2C

P
j2C

p(i, j) log [p(i, j)/p(i) p(j)] 2

Consider a large database of pairwise alignments in which a
pair of aligned residues is represented by a single symbol, with
probability p(i, j). The average information per symbol is then
the entropy de®ned above, and Crooks' criterion for an
optimal alphabet is understood as maximizing the information
content of the database as expressed in that alphabet.

Greedy algorithm for optimal alphabet search

Given a maximization function, there are too many possible
compressed alphabets to be exhaustively tested on a conven-
tional computer. We used a greedy algorithm that seeks to
maximize the entropy (equation 2). Note that when N = |A| ± 1,
there are N(N ± 1)/2 compressed alphabets formed by making
a class from each pair of letters. Starting with N = |A| ± 1, we
test all alphabets and keep the m best, where m is a parameter
of the algorithm. This procedure is repeated on all retained
alphabets with N reduced by 1, iterating until N = 2. If m is
suf®ciently large, the algorithm is exact but computationally
intractable for interesting values of N. We used two substi-
tution matrices for which the underlying probabilities are
readily available: BLOSUM62 and the VTML240 matrix (13).
(We found integer rounded log-score matrices to have
inadequate precision.) We found convergence at m = 2
(BLOSUM62) and m = 4 (VTML240), meaning that identical
alphabets were found using all greater values of m that we
tried (up to 4906). This rapid and stable convergence suggests
that the algorithm found global maxima. The alphabets
produced by this method are denoted using SE-B(N) for
BLOSUM62 and SE-V(N) for VTML240.

k-mer counting

A k-mer is a contiguous subsequence of length k, also known
as a word or k-tuple. Related sequences tend to have more k-
mers in common than expected by chance, provided that k is
not too large and the divergence is not too great. Many
sequence comparison methods based on k-mer counting have
been proposed in the literature (reviewed in 14). The statistics
of k-mers in sequences related by Markov processes were
studied in detail by Reinert et al. (15). The number of k-mers
shared by two sequences can be determined using a simple
O(L) algorithm that assigns consecutive integer values to each
possible k-mer and uses this integer as an index in a table. This
technique was used by Jones et al. (16), who counted 3mers in
A to identify closely related sequences.

k-mers in compressed alphabets

The MAFFT family of algorithms (17) constructs an initial
guide tree for multiple alignment using a fast clustering
method. The distance measure is obtained by counting 6mers
in a compressed alphabet we call Dayhoff (6), which contains
six amino acid classes identi®ed by Dayhoff et al. (18). The
authors' motivation for using a compressed alphabet and the
choices of k and N are not discussed, but the idea is intuitively
appealing. As sequences diverge, the number of common k-
mers in A will on average be reduced, ultimately reaching a
limit comparable to the number expected in unrelated
sequences. If a compressed alphabet is used, we might expect
this limit to be reached at a greater evolutionary distance, and
perhaps suitable choices of N and k might give better estimates
in different identity ranges.

Estimating evolutionary distance

As a measure of the distance between two sequences we de®ne
the fractional common k-mer count F of two sequences 1 and
2, as follows:

F =
P

t
min [n1(t), n2(t)]/[min (L1, L2) ± k + 1] 3

Figure 1. Here we show a core block from the CLUSTAL_W alignment of
selected sequences containing SH2 domains. The upper alignment uses A,
the standard amino acid alphabet. The lower version is the same alignment
presented in the SE-V(10) alphabet (Table 1) in which members of a class
are represented by its ®rst letter in alphabetical order (e.g. I, L, M and V are
shown as I). Columns that are perfectly conserved in the given alphabet are
indicated with upper case letters and an asterisk (*) below. The number of
conserved columns increases from 17 in A to 25 in SE-V(10). The number
of fully conserved k-mers increases from 6 to 13 for k = 3 and from 4 to 9
for k = 4.

Nucleic Acids Research, 2004, Vol. 32, No. 1 381

Here t is a k-mer, n1(t) and n2(t) are the number of times t
occurs in 1 and 2, respectively, and L1, L2 are the sequence
lengths. With appropriate choices of alphabet and k, this is
equivalent to the measures used in (16) and by MAFFT. It may
be motivated by a simple model that assumes homologous k-
mers are always identical. Then min [n1(t), n2(t)] is an upper
bound on the number of instances of t that are homologous,
and the denominator is the number of k-mers in the shorter
sequence, i.e. an upper bound on the total number of
potentially homologous k-mers. Common k-mers due to
chance add positive noise to F; mutations that cause a k-mer
to change reduce F, which therefore tends to decrease with
increasing evolutiuonary distance. Improvements might be
achieved by weighting the average according to a feature
expected to correlate with the probability that a common k-
mer is homologous, such its background probability or the
difference in its positions in the two sequences compared with
the difference seen in other common k-mers, but we do not
consider these ideas further here.

k-mer extension

All identical subsequences of length >k between two
sequences can be identi®ed using the following procedure:
assign a unique integer 0 ¼ (Nk ± 1) to a k-mer by interpreting
letters as digits with radix N. Use this integer as an index in a
table, with one entry for each possible k-mer. An entry in this
table contains a list of positions where the corresponding k-
mer is found. The table is ®rst built for one sequence. k-mers in
the second sequence are then enumerated in position order
until a common k-mer is found. The position(s) of that k-mer
in the second sequence are determined using the table, and
each match extended one letter at a time until the sequences
differ. Enumeration of k-mers in the second sequence then
resumes from the end of the longest match. We call this
method k-mer extension. A compressed alphabet may be used
with the expectation that longer matches will be found. The
matches found by this method are candidate local alignments.
If desired, an expectation value can be computed for a
matched region. Diagonals may be further extended by
allowing high-scoring substitutions rather than matching
letters, or by introducing full dynamic programming (DP)
optimization on the remaining regions. k-mer extension is
related to techniques employed by several well-known
algorithms [e.g. FASTA (19) and BLAST] to ®nd and extend
high-scoring diagonals. In MAFFT, the fast Fourier transform
(FFT), which has O(L log L) time complexity, is used. We
propose k-mer extension as a signi®cantly faster alternative to
FFT. If the list contained in a table entry is allowed to be of
arbitrary length, the algorithm is properly O(L2), although we
®nd that the effective complexity for typical sequences is close
to O(L) as multiple instances of a given k-mer are relatively
rare in a suitable alphabet. This can be addressed by accepting
O(L2) as a worst case, or by setting a maximum length for the
list of positions where a given k-mer is found, which restores
O(L) at the cost of allowing false negatives. In the latter case, a
tie-breaker is applied when the maximum is exceeded. When
used to optimize global alignment, it is useful to keep the
position(s) closest to the center of the sequence, as the saved
DP matrix area is increased by a central diagonal versus one
near a terminal. Also, terminal regions are less likely to
contain diagonals. Application of the method to pro®le

alignment is straightforward. If a column in a multiple
alignment is fully conserved in the chosen alphabet, it is
represented by the appropriate letter. Otherwise it is repre-
sented by a new symbol that fails to match all letters and itself.

RESULTS

We used a set of 1484 pairs of protein structures selected by
Sadreyev and Grishin (20) (data kindly provided by Ruslan
Sadreyev). These pairs were chosen to be representative of
alignable structures in the FSSP database (21).

The k-mer distance

In order to evaluate the performance of k-mer counting we
need an objective measure of distance. We are interested in the
application of k-mer counting to fast clustering in global
multiple sequence alignment algorithms, and therefore choose
to use the fractional identity D computed from the
CLUSTAL_W alignment of two full-chain sequences for
this purpose. D is used by CLUSTAL_W to construct its own
guide tree. However, it should be noted that identity is an
approximate distance measure that is increasingly unreliable
at lower identities (22). Possibly a distance measure derived
by k-mer counting could be more accurate than identity for
suf®ciently diverged sequences, but this is not readily testable
due to the lack of reference data for true distances. Starting
from F, as de®ned in equation 3, we ®nd empirically that a
logarithmic transformation yields an approximately linear
relationship with D for a wide range of alphabets and values of
k. The transformed measure Y, which we call the k-mer
distance, is de®ned as follows:

Y = log (0.1 + F) 4

We use the correlation coef®cient r between the k-mer
distance Y and identity D as a quality score: we interpret a
greater r as indicating a better measure. Figure 2 shows scatter
plots of F and Y for three choices of parameters (alphabet and
k). We computed r for values of k from 2 to 8 and the
following alphabets: Solis-D(2±14), Solis-G(2±14), Li-A(2±
19), Li-B(2±19), SE-B(2±19), SE-V(2±19), Murphy(8,10,15)
and Dayhoff(6), giving a total of 86 unique alphabets after
duplicates are eliminated. Table 1 shows some representative
alphabets. Table 2 shows r for these alphabets and selected
values of k for the complete set of sequence pairs and also for a
subset of low identity (D = 0.25±0.5). We made no attempt to
assess the statistical signi®cance of the rankings implied by
these results as the reference standard D is itself approximate,
and errors in predicting D are larger than the typical standard
deviation. Surprisingly, we ®nd little evidence that com-
pressed alphabets give any improvement over the full alphabet
A in any range of identities. This is illustrated by the low
identity results for D = 0.25±0.5 (Table 2), where the k-mer
distances computed with A, k = 4 produce the best correlation
with D of all the tested combinations (complete results not
shown).

Phylogenetic tree construction

The k-mer distance can be used to rapidly construct
phylogenetic trees. Given N unaligned sequences of length
L, the k-mer distance Y is calculated for each pair, giving an

382 Nucleic Acids Research, 2004, Vol. 32, No. 1

estimate D of the fractional identity. This is converted to an
estimate d of an additive evolutionary distance, for example
by using the Kimura correction: d = ln [D ± (1 ± D2)/5] (22).
The resulting distance matrix is then used to construct a tree
through a clustering algorithm such as UPGMA (2) or
neighbor-joining (3). This gives a distance matrix in O(LN2)
time, versus O(L2N2) for typical measures obtained from
pairwise alignments. As a practical illustration, we chose a set
of 2000 sequences (average length 282) obtained by a search
for homologs of dienoyl-coenzyme A isomerase. Starting
from unaligned sequences, CLUSTAL_W's distance matrix
computation on this set required 6.2 h. Our preliminary k-mer
distance implementation was able to compute a matrix in 6.1 s,
faster by a factor of 3700. (All times quoted in this work were
measured using a 2.5 GHz Pentium 4 processor.) The quality

of the resulting trees is hard to assess for the usual reason that
reference data are generally not available, but given the good
correlation between k-mer distance and identity we expect that
in many cases they will be of comparable quality or only
slightly degraded compared with those derived from aligned
identity. We further expect that the k-mer distance estimate of
identity will tend to have systematic errors within a given
protein family, and will therefore exhibit reduced scatter and
improved correlation compared with data from unrelated
families (as in Fig. 2). Note that edge lengths are unimportant
in a tree used to guide multiple alignment, which requires only
that the branching order is approximately correct.

Figure 2. Scatterplots show the correlation between D, the fractional identity in the full alphabet computed from CLUSTAL_W alignments, and the fractional
common k-mer count (F, equation 3) or the k-mer distance (Y, equation 4). We show three selected cases: the full alphabet A, k = 3 [the parameters used in
(16)]; Dayhoff(6), k = 6 (used by MAFFT); and an intermediate case, SE-B(10), k = 4. Note that the relationship between D and Y is approximately linear.

Table 1. Examples of compressed alphabets produced by different
methods

Alpha(N) Classes

SE-B(14) A, C, D, EQ, FY, G, H, IV, KR, LM, N, P, ST, W
SE-B(10) AST, C, DN, EQ, FY, G, HW, ILMV, KR, P
SE-V(10) AST, C, DEN, FY, G, H, ILMV, KQR, P, W
Li-A(10) AC, DE, FWY, G, HN, IV, KQR, LM, P, ST
Li-B(10) AST, C, DEQ, FWY, G, HN, IV, KR, LM, P
Solis-D(10) AM, C, DNS, EKQR, F, GP, HT, IV, LY, W
Solis-G(10) AEFIKLMQRVW, C, D, G, H, N, P, S, T, Y
Murphy(10) A, C, DENQ, FWY, G, H, ILMV, KR, P, ST
SE-B(8) AST, C, DHN, EKQR, FWY, G, ILMV, P
SE-B(6) AST, CP, DEHKNQR, FWY, G, ILMV
Dayhoff(6) AGPST, C, DENQ, FWY, HKR, ILMV

Alphabet names are de®ned in the main text.

Table 2. Measured correlation coef®cients (r) for k = 3 to 7 between the
k-mer distance (Y) and fractional identity (D) for the full alphabet A and
the alphabets described in Table 1

r (all pairs) r (D = 0.25±0.5)

Alpha(N) k = 3 k = 4 k = 5 k = 6 k = 7 k = 3 k = 4 k = 5 k = 6 k = 7
A(20) 0.943 0.962 0.944 0.926 0.910 0.575 0.685 0.631 0.584 0.520
SE-B(14) 0.881 0.964 0.961 0.948 0.933 0.422 0.634 0.649 0.611 0.547
SE-B(10) 0.771 0.907 0.959 0.961 0.951 0.248 0.455 0.585 0.589 0.563
SE-V(10) 0.746 0.880 0.951 0.962 0.956 0.232 0.409 0.570 0.602 0.598
Li-A(10) 0.842 0.956 0.964 0.953 0.939 0.350 0.587 0.652 0.634 0.593
Li-B (10) 0.793 0.933 0.962 0.956 0.943 0.281 0.513 0.605 0.592 0.553
Solis-D(10) 0.776 0.913 0.952 0.947 0.933 0.261 0.505 0.625 0.654 0.612
Solis-G(10) 0.692 0.730 0.763 0.812 0.858 0.176 0.205 0.228 0.284 0.323
Murphy(10) 0.770 0.910 0.960 0.962 0.952 0.240 0.441 0.579 0.607 0.592
SE-B(8) 0.751 0.869 0.944 0.962 0.956 0.222 0.396 0.558 0.602 0.588
SE-B(6) 0.711 0.797 0.885 0.939 0.954 0.215 0.312 0.458 0.555 0.580
Dayhoff(6) 0.638 0.737 0.861 0.937 0.955 0.165 0.254 0.407 0.540 0.589

Correlations with k = 2 are lower, the highest for all pairs being r = 0.739
using A. The k = 1 case reduces to a simple composition bias.

Nucleic Acids Research, 2004, Vol. 32, No. 1 383

Optimizing global alignment time

If diagonals are known, they can be used to reduce alignment
time. Our focus is again on global alignment, where a diagonal
reduces the DP matrix to two submatrices (Fig. 3). Note that
even a short match can give signi®cant time savings; for
example, the matrix area is at least halved by a diagonal of
length >1 located in the midpoint of both sequences. We
evaluated the ability of k-mer extension to correctly identify
diagonals in the CLUSTAL_W alignments of the 1848
Sadreyev±Grishin pairs. (The FSSP structural alignments
were not used as they are local rather than global and also
ignore sequence homology, so regions of high similarity are
sometimes shifted.) We denote the length of a k-mer extension
match by l and the margin, de®ned as the distance of a given
letter from the closest end of the match, by m (see Fig. 3). We
®nd, as would be expected, that the fraction y of correct match
positions increases with l and with m, resulting in a trade-off
between coverage (number of correct match positions) and
error (false-positive positions). For example, with l > 8 and m
> 3, we ®nd that many choices of alphabet and k give y >
0.99. It is then reasonable to include the entire match (minus
margins < m) rather than just the central position in the

diagonal, as MAFFT does. Some typical results are shown in
Table 3. As before, we do not attempt to assess the statistical
signi®cance of differences in performance.

These results strongly suggest that use of a suitable
compressed alphabet can improve performance, with the
better parameters giving ~15% more coverage over the full
alphabet A. To compare performance against the FFT, we
modi®ed MAFFT to record the reduction in DP matrix area
and execution time of the routines that ®nd diagonals. With the
Sadreyev±Grishin pairs, we found that MAFFT reduced the
total DP space from 117 136 137 to 92 716 633 matrix
elements, a reduction of 21%. Total execution time for
diagonal ®nding was 2.4 s, mostly consumed by the FFT
routines. Using k-mer extension with SE-V(11), k = 4, the DP
space was reduced to 97 099 841 elements, saving 17%. Our
preliminary implementation allowed only one position per k-
mer; we believe the coverage can be improved with minimal
cost in time by allowing multiple positions. Total execution
time for ®nding diagonals was 0.08 s. Time spent performing
DP in MAFFT was 7.1 s, compared with 9.0 s. with FFT
disabled. Time for diagonal ®nding and DP combined was
therefore 7.1 + 2.4 = 9.5 s, demonstrating that on this test data
the net result of using FFT is an increase in execution time of
~5%. If FFT were replaced by k-mer extension, the total time
would be reduced to 7.1 + 0.08 = 7.2 s, saving 20%. Of the
0.5% k-mer extension positions that were incorrect according
to CLUSTAL_W, none were in the regions aligned according
to FSSP, and hence were found exclusively in regions where
there may be no meaningful sequence alignment (due to lack
of homology and/or divergent structure).

DISCUSSION

We present a method for discovering local similarities
between two sequences by identifying a common k-mer and
extending the match. This is achieved by a fast, simple
algorithm that has O(L) time complexity. We show that use of
a compressed amino acid alphabet can increase the coverage
of the method with a negligible increase in errors compared
with full dynamic programming. On a test set of 1848
sequence pairs selected by Sadreyev and Grishin from the
FSSP database, we ®nd that this method achieves comparable
coverage to the FFT method used by MAFFT and is more than
an order of magnitude faster. On this test, we ®nd that using
FFT fails to save time, giving a net increase of ~5%. Replacing
FFT with k-mer extension would give a reduction of 20% in
time. Greater reduction would be expected when aligning
more closely related sequences. We also investigate the use of
k-mer counting as a fast estimate of evolutionary distance. We
show that k-mer distances correlate well with the fractional
identity computed from a global alignment. However, con-
trary to our expectations, we fail to ®nd evidence that use of a
compressed alphabet can improve the accuracy of the
estimate. We suggest the use of k-mer distance as the basis
for rapid construction of phylogenetic trees. This reduces the
time complexity of distance matrix construction from O(L2N2)
to O(LN2), which we show can lead to a time reduction in this
component of practical applications of more than three orders
of magnitude.

Table 3. Selected results for k-mer extension with l > 8, m > 3

Alpha(N) k Coverage y

Li-A(9) 6 30 868 0.995
SE-V(12) 5 30 713 0.996
Li-A(9) 5 30 526 0.995
SE-V(11) 4 30 519 0.995
Li-A(10) 6 30 478 0.995
SE-V(12) 5 30 474 0.995
Li-B(9) 4 30 472 0.995
Li-B(10) 4 30 460 0.995
A(20) 4 26 759 0.999
A(20) 3 26 494 0.999

Coverage is the number of correct positions, determined by reference to the
465 907 positions in the CLUSTAL_W alignments. The fraction of
positions that are correct according to CLUSTAL_W is y. Included are the
best eight combinations of alphabet and k satisfying y > 0.995 and Nk

(lookup table size) < 106; also, A with k = 3 and k = 4 for comparison.
Rows are sorted by coverage.

Figure 3. The geometry of a diagonal (bold line) in a dynamic program-
ming matrix. The length of the diagonal is l, the margin is m. If the diag-
onal can be identi®ed in a pre-processing step such as k-mer extension or
FFT, then the shaded region can be excluded, reducing the time needed to
compute a global alignment by dynamic programming.

384 Nucleic Acids Research, 2004, Vol. 32, No. 1

ACKNOWLEDGEMENTS

The author is grateful to Doug Brutlag, Gavin Crooks, Richard
Durbin and Tobias MuÈller for helpful discussions. Ruslan
Sadreyev generously provided the FSSP test data.

REFERENCES

1. Altschul,S.F., Gish,W., Miller,W., Myers,E.E. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403±410.

2. Sneath,P.H.A. and Sokal,R.R. (1973) Numerical Taxonomy. Freeman,
San Francisco, CA.

3. Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4,
406±425.

4. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL_W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-speci®c gap penalties and weight
matrix choice. Nucleic Acids Res., 22, 4673±4680.

5. Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis. Cambridge University Press, Cambridge, UK.

6. Li,T., Fan,K., Wang,J. and Wang,W. (2003) Reduction of protein
sequence complexity by residue grouping. Protein Eng., 16, 323±330.

7. Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices
from protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915±10919.

8. Solis,A.D. and Rackovsky,S. (2000) Optimized representations and
maximal information in proteins. Proteins, 38, 149±164.

9. Murphy,L.R., Wallqvist,A. and Levy,R.M. (2000) Simpli®ed amino acid
alphabets for protein fold recognition and implications for folding.
Protein Eng., 13, 149±152.

10. Taylor,W.R. (1982) The classi®cation of amino acid conservation.
J. Theor. Biol., 119, 205±208.

11. Wu,T.D. and Brutlag,D.L. (1996) Discovering empirically conserved
amino acid substitution groups in databases of protein families. Proc. Int.
Conf. Intell. Syst. Mol. Biol., 4, 230±240.

12. Altschul,S.F. (1991) Amino acid substitution matrices from an
information theoretic perspective. J. Mol. Biol., 219, 555±565.

13. MuÈller,T., Spang,R. and Vingron,M. (2002) Estimating amino acid
substitution models: a comparison of Dayhoff's estimator, the resolvent
approach and a maximum likelihood method. Mol. Biol. Evol., 19, 8±13.

14. Vinga,S. and Almeida,J. (2003) Alignment-free sequence comparisonÐa
review. Bioinformatics, 19, 513±523.

15. Reinert,G., Schbath,S. and Waterman,M.S. (2000) Probabilistic and
statistical properties of words: an overview. J. Comp. Biol., 7, 1±46.

16. Jones,D.T., Taylor,W.R. and Thornton,J.M. (1992) The rapid generation
of mutation data matrices from protein sequences. CABIOS, 8, 275±282.

17. Katoh,K., Misawa,K., Kuma,K. and Miyata,T. (2002) MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res., 30, 3059±3066.

18. Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) A model of
evolutionary change in proteins. In Dayhoff,M.O. and Ech,R.V. (eds),
Atlas of Protein Sequence and Structure. National Biomedical Research
Foundation, MD, pp. 345±352.

19. Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 4, 2444±2448.

20. Sadreyev,R. and Grishin,N. (2003) COMPASS: a tool for comparison of
multiple protein alignments with assessment of statistical signi®cance.
J. Mol. Biol., 326, 317±336.

21. Holm,L. and Sander,C. (1998) Touring protein fold space with Dali/
FSSP. Nucleic Acids Res., 26, 316±319.

22. Kimura,M. (1983) The Neutral Theory of Molecular Evolution.
Cambridge University Press, Cambridge, UK.

Nucleic Acids Research, 2004, Vol. 32, No. 1 385

