

MUSCLE User Guide

Multiple sequence comparison by log-expectation
by Robert C. Edgar

Version 2.1
January 2004

http://www.drive5.com/muscle
muscle (at) drive5.com

1

http://www.drive5.com/muscle

Table of Contents
1 Introduction ... 3

1.1 Changes in version 2.1.. 3
2 Quick Start... 3

2.1 Installation .. 3
2.2 Making an alignment .. 3
2.3 Pipelining.. 3

3 File Formats... 4
3.1 Input files.. 4
3.2 Output files ... 4

4 Using MUSCLE .. 4
4.1 Command-line options ... 4
4.2 Log file ... 4
4.3 Progress messages .. 5
4.4 Running out of memory.. 5
4.5 Troubleshooting.. 5
4.6 Technical support ... 6

5 Command Line Reference ... 6

2

1 Introduction
MUSCLE is a program for creating multiple alignments of amino acid sequences. A range of options is
provided that give you the choice of optimizing accuracy, speed, or some compromise between the two.
Default parameters are those that give the best average accuracy in our tests. Using versions current at the
time of writing, my tests show that MUSCLE can achieve both better average accuracy and better speed
than CLUSTALW or T-Coffee, depending on the chosen options.

1.1 Changes in version 2.1
There has been a substantial re-design of MUSCLE since 2.0. The speed of the algorithm has been greatly
improved, and many "research" options have been removed.

2 Quick Start
The MUSCLE algorithm is delivered as a command-line program called muscle. If you are running under
Linux or Unix that means you will need to be working at a shell prompt. If you are running under Windows,
you should be in a command window (nostalgically known to us older people as a DOS prompt). If you
don't know how to use command-line programs, you will need to get help—from now on, I will assume
you know how to work with command-line programs.

2.1 Installation
Copy the muscle binary file to a directory that is accessible from your computer. That's it—there are no
configuration files, libraries, environment variables or other settings to worry about. If you are using
Windows, then the binary file is named muscle.exe. From now on muscle should be understood to mean
"muscle if you are using Linux or Unix, muscle.exe if you are using Windows".

2.2 Making an alignment
Make a FASTA file containing some protein sequences. (If you are not familiar with FASTA format, it is
described in detail later in this Guide.) For now, just to make things fast, limit the number of sequence in
the file to no more than 50 and the sequence length to be no more than 500. Call the input file seqs.fa. (An
example file named seqs.fa is distributed with the standard MUSCLE package). Make sure the directory
containing the muscle binary is in your path. (If it isn't, you can run it by typing the full path name, and the
following example command lines must be changed accordingly). Now type:

muscle -in seqs.fa -out seqs.afa

You should see some progress messages. If muscle completes successfully, it will create a file seqs.afa
containing the alignment. By default, output is created in "aligned FASTA" format (hence the .afa
extension). This is just like regular FASTA except that gaps are added in order to align the sequences. This
is a nice format for computers but not very readable for people, so to look at the alignment you will want an
alignment viewer such as Belvu, or a script that converts FASTA to a more readable format. You can also
use the –msf command-line option to request output in MSF format, which is easier to understand for
people. If muscle gives an error message and you don't know how to fix it, please read the Troubleshooting
section.

2.3 Pipelining
Input can be taken from standard input, and output can be written to standard output. This is the default, so
our first example would also work like this:

muscle < seqs.fa > seqs.afa

3

3 File Formats
MUSCLE uses FASTA format for both input and output. It also offers MSF, a more readable output format,
which is selected by the –msf option.

3.1 Input files
Input files must be in FASTA format. These are plain text files (word processing files such as Word
documents are not understood!). Unix, Windows and DOS text files are supported (end-of-line may be NL
or CR NL). There is a maximum length of 16,000 characters per line in the current version (this limit is
subject to change, and hopefully elimination, in future versions). There is no explicit limit on the length of
a sequence, however if you are running a 32-bit version of muscle then the maximum will be very roughly
10,000 letters due to maximum addressable size of tables required in memory. Each sequence starts with an
annotation line, which is recognized by having a greater-than symbol ">" as its first character. There is no
limit on the length of an annotation line (other than the input line length limit), and there is no requirement
that the annotation be unique. The sequence itself follows on one or more subsequent lines, and is
terminated either by the next annotation line or by the end of the file. The standard single-letter amino acid
alphabet is used. Upper and lower case is allowed, the case is not significant. The special characters X, B, Z
and U are understood. X means "unknown amino acid", B is D or N, Z is E or Q. Nucleotide sequences
(DNA and RNA) are not supported. If you give muscle a file containing letters AGCTU only, it will
assume that they are amino acids, not nucleotides. U is understood to be the 21st amino acid Selenocysteine
(three-letter abbreviation Sel; not to be confused with the RNA base Uracil which is represented by U in
some alphabets). White space (spaces, tabs and the end-of-line characters CR and NL) is allowed inside
sequence data. Dots "." and dashes "–" in sequences are allowed and are discarded unless the input is
expected to be aligned (–refine option).

3.2 Output files
By default, output is also written in FASTA format. All letters are upper-case and gaps are represented by
dashes "–". You can also request output in MSF format, which is more readable than FASTA, by using the
–msf command-line option. It would be nice if more output formats were supported—please let me know
what formats you would find useful.

4 Using MUSCLE
4.1 Command-line options
There are two types of command-line options: value options and flag options. Value options are followed
by the value of the given parameter, for example –in <filename>; flag options just stand for themselves,
such as –msf. All options are a dash (not two dashes!) followed by a long name; there are no single-letter
equivalents. Value options must be separated from their values by white space in the command line. Thus,
muscle does not follow Unix, Linux or Posix standards, for which we apologize. The order in which
options are given is irrelevant unless two options contradict, in which case the right-most option silently
wins.

4.2 Log file
You can specify a log file by using –log <filename> or –loga <filename>. Using –log causes any existing
file to be deleted, –loga appends to any existing file. A message will be written to the log file when muscle
starts and stops. Error and warning messages will also be written to the log. If –verbose is specified, then
more information will be written, including the command line used to invoke muscle, the resulting internal
parameter settings, and also progress messages. The content and format of verbose log file output is subject
to change in future versions.

The use of a log file may seem contrary to Unix conventions for using standard output and standard error. I
like these conventions, but never found a fully satisfactory way to use them. I like progress messages (see
below), but they mess up a file if you re-direct standard error and there are errors or warning messages too.

4

I could try to detect whether a standard file handle is a tty device or a disk file and change behavior
accordingly, but I regard this as too complicated and too hard for the user to understand. On Windows it
can be hard to re-direct standard file handles, especially when working in a GUI debugger. Maybe one day
I will figure out a better solution (suggestions welcomed).

I highly recommend using –verbose and –log[a], especially when running muscle in a batch mode. This
enables you to verify whether a particular alignment was completed and to review any errors and warning
that occurred.

4.3 Progress messages
By default, muscle writes progress messages to standard error periodically so that you know it's doing
something and get some feedback about the time and memory requirements for the alignment. Here is a
typical progress message.

00:00:23 25 Mb Iter 2 87.20% Build guide tree

The fields are as follows.

00:00:23 Elapsed time since muscle started.
25 Mb Peak memory use in megabytes (i.e., not the current usage, but the

maximum amount of memory used since muscle started).
Iter 2 Iteration currently in progress.
87.20% How much of the current step has been completed (percentage).
Build... A brief description of the current step.

The –quiet command-line option disables writing progress messages to standard error. If the –verbose
command-line option is specified, a progress message will be written to the log file when each iteration
completes. So –quiet and –verbose are not contradictory.

4.4 Running out of memory
The muscle code tries to deal gracefully with low-memory conditions by using the following technique. A
block of "emergency reserve" memory is allocated when muscle starts. If a later request to allocate memory
fails, this reserve block is made available, and muscle attempts to save the current alignment. With luck, the
reserved memory will be enough to allow muscle to save the alignment and exit gracefully with an
informative error message.

4.5 Troubleshooting
Here is some general advice on what to do if muscle fails and you don't understand what happened. The
code is designed to fail gracefully with an informative error message when something goes wrong, but
there will no doubt be situations I haven't anticipated (not to mention bugs).

Check the MUSCLE web site for updates, bug reports and other relevant information.

 http://www.drive5.com/muscle

Check the input file to make sure it is in valid FASTA format. Try giving it to another sequence analysis
program that can accept large FASTA files (e.g., the NCBI formatdb utility) to see if you get an
informative error message. Try dividing the file into two halves and using each half individually as input. If
one half fails and the other does not, repeat until the problem is localized as far as possible.

Use –log or –loga and –verbose and check the log file to see if there are any messages that give you a hint
about the problem. Look at the peak memory requirements (reported in progress messages) to see if you
may be exceeding the physical or virtual memory capacity of your computer.

5

http://www.drive5.com/muscle

6

If muscle crashes without giving an error message, or hangs, then you may need to refer to the source code
or use a debugger. A "debug" version, muscled, may be provided. This is built from the same source code
but with the DEBUG macro defined and without compiler optimizations. This version runs much more
slowly (perhaps by a factor of three or more), but does a lot more internal checking and may be able to
catch something that is going wrong in the code. The –core option specifies that muscle should not catch
exceptions. When –core is specified, an exception may result in a debugger trap or a core dump, depending
on the execution environment. The –nocore option has the opposite effect. In muscle, –nocore is the default,
–core is the default in muscled.

4.6 Technical support
I am happy to provide support. But I am busy, and am offering this program at no charge, so I ask you to
make a reasonable effort to figure things out for yourself before contacting me.

5 Command Line Reference

Value option Legal values Default Description
gapopen Floating point [1] The gap open score. Must be negative.

in Any file name standard input Where to find the input sequences.

log File name None. Log file name (delete existing file).

loga File name None. Log file name (append to existing file).

out File name standard output Where to write the alignment.

Flag option Set by default? Description
msf no Write output in MSF format (default is to use FASTA).

nocore no in muscle,

yes in muscled.
Catch exceptions and give an error message if possible.

quiet no Do not display progress messages.

verbose no Write parameter settings and progress messages to log file.

	Introduction
	Changes in version 2.1

	Quick Start
	Installation
	Making an alignment
	Pipelining

	File Formats
	Input files
	Output files

	Using MUSCLE
	Command-line options
	Log file
	Progress messages
	Running out of memory
	Troubleshooting
	Technical support

	Command Line Reference

