

MUSCLE User Guide

Multiple sequence comparison by log-expectation
by Robert C. Edgar

Version 2.0
November 2003

http://www.drive5.com/muscle
muscle (at) drive5.com

1

http://www.drive5.com/muscle

Table of Contents

1 Introduction 3
2 Quick Start 3

2.1 Installation 3
2.2 Making an alignment 3
2.3 Large alignments 3
2.4 Fastest speed 4
2.5 Accuracy: caveat emptor 4
2.6 Pipelining 4
2.7 Refining an existing alignment 4

3 File Formats 4
3.1 Input files 4
3.2 Output files 5

4 Using MUSCLE 5
4.1 How the algorithm works 5
4.2 Command-line options 6
4.3 The maxiters option 6
4.4 The maxtrees option 6
4.5 The maxhours option 6
4.6 The profile scoring function 7
4.7 Diagonal optimization 7
4.8 Anchor optimization 7
4.9 Log file 7
4.10 Progress messages 7
4.11 Recommended usage 8
4.12 Large alignments 8
4.13 Global alignment 9
4.14 Running out of memory 10
4.15 Troubleshooting 10
4.16 Technical support 11

5 Command Line Reference 11

2

1 Introduction
MUSCLE is a program for creating multiple alignments of amino acid sequences. A range of options is
provided that give you the choice of optimizing accuracy, speed, or some compromise between the two.
Default parameters are those that give the best average accuracy in our tests. Using versions current at the
time of writing, my tests show that MUSCLE can achieve both better average accuracy and better speed
than CLUSTALW or T-Coffee, depending on the chosen options.

2 Quick Start
The MUSCLE algorithm is delivered as a command-line program called muscle. If you are running under
Linux or Unix that means you will need to be working at a shell prompt. If you are running under Windows,
you should be in a command window (nostalgically known to us older people as a DOS prompt). If you
don't know how to use command-line programs, you will need to get help—from now on, I will assume
you know how to work with command-line programs.

2.1 Installation
Copy the muscle binary file to a directory that is accessible from your computer. That's it—there are no
configuration files, libraries, environment variables or other settings to worry about. If you are using
Windows, then the binary file is named muscle.exe. From now on muscle should be understood to mean
"muscle if you are using Linux or Unix, muscle.exe if you are using Windows".

2.2 Making an alignment
Make a FASTA file containing some protein sequences. (If you are not familiar with FASTA format, it is
described in detail later in this Guide.) For now, just to make things fast, limit the number of sequence in
the file to no more than 50 and the sequence length to be no more than 500. Call the input file seqs.fa. (An
example file named seqs.fa is distributed with the standard MUSCLE package). Make sure the directory
containing the muscle binary is in your path. (If it isn't, you can run it by typing the full path name, and the
following example command lines must be changed accordingly). Now type:

muscle -in seqs.fa -out seqs.afa

You should see some progress messages. If muscle completes successfully, it will create a file seqs.afa
containing the alignment. By default, output is created in "aligned FASTA" format (hence the .afa
extension). This is just like regular FASTA except that gaps are added in order to align the sequences. This
is a nice format for computers but not very readable for people, so to look at the alignment you will want an
alignment viewer such as Belvu, or a script that converts FASTA to a more readable format. You can also
use the –msf command-line option to request output in MSF format, which is easier to understand for
people. If muscle gives an error message and you don't know how to fix it, please read the Troubleshooting
section.

The default settings are designed to give the best accuracy, so this may be all you need to know.

2.3 Large alignments
If you have a large number of sequences (thousands), or they are very long, then the default settings of may
be too slow for practical use. A good compromise between speed and accuracy is to run just the first two
iterations of the algorithm. On average, this gives significantly better accuracy than CLUSTALW but much
better speed. This is done by the option –maxiters 2, as in the following example.

muscle -in seqs.fa -out seqs.afa -maxiters 2

There is a longer discussion later about what to do if you have a very large alignment—muscle is designed
with this kind of challenge in mind, so there are several features that may help you with your particular
situation.

3

2.4 Fastest speed
If you want the fastest possible speed, then the following example shows the applicable options.

muscle -in seqs.fa -out seqs.afa -maxiters 1 -diags -sp

At the time of writing, this is the faster than any other multiple sequence alignment program that I have
tested. The alignments are not bad, especially when the sequences are closely related. However, as you
might expect, this blazing speed comes at the cost of the lowest average accuracy of the options that muscle
provides.

2.5 Accuracy: caveat emptor
Why do I keep using the clumsy phrase "average accuracy" instead of just saying "accuracy"? That's
because the quality of alignments produced by MUSCLE varies, as do those produced other programs such
as CLUSTALW and T-Coffee. The state of the art leaves plenty of room for improvement. Sometimes the
fastest speed options to muscle give alignments that are better than T-Coffee, though the reverse will more
often be the case. With challenging sets of sequences, it is a good idea to make several different alignments
using different muscle options and to try other programs too. Regions where different alignments agree are
more believable than regions where they disagree.

2.6 Pipelining
Input can be taken from standard input, and output can be written to standard output. This is the default, so
our first example would also work like this:

muscle < seqs.fa > seqs.afa

2.7 Refining an existing alignment
You can ask muscle to try to improve an existing alignment by using the–refine option. The input file must
then be a FASTA file containing an alignment. All sequences must be of equal length, gaps can be
specified using dots "." or dashes "–". For example:

muscle -in seqs.afa -out refined.afa -refine

3 File Formats
MUSCLE uses FASTA format for both input and output. It does support a variant of MSF as a more
readable output format; this is selected by using the –msf option.

3.1 Input files
Input files must be in FASTA format. These are plain text files (word processing files such as Word
documents are not understood!). Unix, Windows and DOS text files are supported (end-of-line may be NL
or CR NL). There is a maximum length of 16,000 characters per line in the current version (this limit is
subject to change, and hopefully elimination, in future versions). There is no explicit limit on the length of
a sequence, however if you are running a 32-bit version of muscle then the maximum will be very roughly
10,000 letters due to maximum addressable size of tables required in memory. Each sequence starts with an
annotation line, which is recognized by having a greater-than symbol ">" as its first character. There is no
limit on the length of an annotation line (other than the input line length limit), and there is no requirement
that the annotation be unique. The sequence itself follows on one or more subsequent lines, and is
terminated either by the next annotation line or by the end of the file. The standard single-letter amino acid
alphabet is used. Upper and lower case is allowed, the case is not significant. The special characters X, B, Z
and U are understood. X means "unknown amino acid", B is D or N, Z is E or Q. Nucleotide sequences
(DNA and RNA) are not supported. If you give muscle a file containing letters AGCTU only, it will
assume that they are amino acids, not nucleotides. U is understood to be the 21st amino acid Selenocysteine
(three-letter abbreviation Sel; not to be confused with the RNA base Uracil which is represented by U in
some alphabets). White space (spaces, tabs and the end-of-line characters CR and NL) is allowed inside

4

sequence data. Dots "." and dashes "–" in sequences are allowed and are discarded unless the input is
expected to be aligned (–refine option).

3.2 Output files
By default, output is also written in FASTA format. All letters are upper-case and gaps are represented by
dashes "–". You can also request output in MSF format, which is more readable than FASTA, by using the
–msf command-line option. It would be nice if more output formats were supported—please let me know
what formats you would find useful.

4 Using MUSCLE
In this section we give more details of the MUSCLE algorithm and the more important options offered by
the muscle implementation.

4.1 How the algorithm works
We won't give a complete description of the MUSCLE algorithm here—for that, you will have to read the
paper (which at the time of writing will be quite challenging, given that I haven't written it yet). But
hopefully a summary will help explain what some of the command-line options do and how they might be
useful in your work.

The first step is to calculate a tree. In CLUSTALW, this is done as follows. Each pair of input sequences is
aligned, and used to compute the pair-wise identity of the pair. Identities are converted to a measure of
distance. Finally, the distance matrix is converted to a tree using a clustering method (CLUSTALW uses
neighbor-joining). If you have 1,000 sequences, there are (1,000 × 999)/2 = 499,500 pairs, so aligning
every pair can take a while. MUSCLE uses a much faster, but somewhat more approximate, method to
compute distances: it counts the number of short sub-sequences (known as k-mers, k-tuples or words) that
two sequences have in common, without constructing an alignment. This is typically around 3,000 times
faster that CLUSTALW's method, but the trees will generally be less accurate. We call this step "k-mer
clustering".

The second step is to use the tree to construct what is known as a progressive alignment. At each node of
the binary tree, a pair-wise alignment is constructed, progressing from the leaves towards the root. The first
alignment will be made from two sequences. Later alignments will be one of the three following types:
sequence-sequence, profile-sequence or profile-profile, where "profile" means the multiple alignment of the
sequences under a given internal node of the tree. This is very similar to what CLUSTALW does once it
has built a tree.

Now we have a multiple alignment, which has been built very quickly compared with conventional
methods, mainly because of the distance calculation using k-mers rather than alignments. The quality of
this alignment is typically pretty good—it will often tie or beat a T-Coffee alignment on our tests. However,
on average, we find that it can be improved by proceeding through the following steps.

From the multiple alignment, we can now compute the pair-wise identities of each pair of sequences. This
gives us a new distance matrix, from which we estimate a new tree. We compare the old and new trees, and
re-align subgroups where needed to produce a progressive multiple alignment from the new tree. If the two
trees are identical, there is nothing to do; if there are no subtrees that agree (very unlikely), then the whole
progressive alignment procedure must be repeated from scratch. Typically we find that the tree is pretty
stable near the leaves, but some re-alignments are needed closer the root. This procedure (compute pair-
wise identities, estimate new tree, compare trees, re-align) is iterated until the tree stabilizes or until a
specified maximum number of iterations has been done. We call this process "tree refinement", although it
also tends to improve the alignment.

We now keep the tree fixed and move to a new procedure which is designed to improve the multiple
alignment. The set of sequences is divided into two subsets (i.e., we make a bipartition on the set of
sequences). A profile is constructed for each of the two subsets based on the current multiple alignment.

5

These two profiles are then re-aligned to each other using the same pair-wise alignment algorithm as used
in the progressive stage. If this improves an "objective score" that measures the quality of the alignment,
then the new multiple alignment is kept, otherwise it is discarded. By default, the objective score is the
classic sum-of-pairs score that takes the (sequence weighted) average of the pair-wise alignment score of
every pair of sequences in the alignment. Bipartitions are chosen by deleting an edge in the guide tree, each
of the two resulting subtrees defines a subset of sequences. This procedure is called "tree dependent
refinement". One iteration of tree dependent refinement tries bipartitions produced by deleting every edge
of the tree in depth order moving from the leaves towards the center of the tree. Iterations continue until
convergence or up to a specified maximum.

For convenience, the major steps in MUSCLE are described as "iterations", though the first three iterations
all do quite different things and may take very different lengths of time to complete. The tree-dependent
refinement iterations 3, 4 ... are true iterations and will take similar lengths of time.

Iteration Actions
1 Distance matrix by k-mer clustering, estimate tree, progressive alignment

according to this tree.

2 Distance matrix by pair-wise identities from current multiple alignment, estimate
tree, progressive alignment according to new tree, repeat until convergence or
specified maximum number of times.

3, 4 ... Tree-dependent refinement. One iteration visits every edge in the tree one time.

4.2 Command-line options
There are two types of command-line options: value options and flag options. Value options are followed
by the value of the given parameter, for example –in <filename>; flag options just stand for themselves,
such as –msf. All options are a dash (not two dashes!) followed by a long name; there are no single-letter
equivalents. Value options must be separated from their values by white space in the command line. Thus,
muscle does not follow Unix, Linux or Posix standards, for which we apologize. The order in which
options are given is irrelevant unless two options contradict, in which case the right-most option silently
wins.

4.3 The maxiters option
You can control the number of iterations that MUSCLE does by specifying the –maxiters option. If you
specify 1, 2 or 3, then this is exactly the number of iterations that will be performed. If the value is greater
than 3, then muscle will continue up to the maximum you specify or until convergence is reached, which
ever happens sooner. The default is 16. If you have a large number of sequences, tree-dependent refinement
may be very slow (see later section Large Alignments).

4.4 The maxtrees option
This option controls the maximum number of new trees to create in iteration 2. Our experience suggests
that a point of diminishing returns is typically reached after the first tree, so the default value is 1. If a
larger value is given, the process will repeat until convergence or until this number of trees has been
created, which ever comes first.

4.5 The maxhours option
If you have a large alignment, muscle may take a long time to complete. It is sometimes convenient to say
"I want the best alignment I can get in 24 hours" rather than specifying a set of options that will take an
unknown length of time. This is done by using –maxhours, which specifies a floating-point number of
hours. If this time is exceeded, muscle will write out current alignment and stop. For example,

muscle -in huge.fa -out huge.afa -maxiters 9999 -maxhours 24.0

6

Note that the actual time may exceed the specified limit by a few minutes while muscle finishes up on a
step. It is also possible for no alignment to be produced if the time limit is too small.

4.6 The profile scoring function
Three different profile scoring functions are supported, the log-expectation score (–le option) and a sum of
pairs score using either the PAM200 matrix (–sp) or the VTML240 matrix (–sv). The log-expectation score
is the default as it gives consistently better results on our tests, but is typically somewhere between two or
three times slower than the sum-of-pairs score.

4.7 Diagonal optimization
Creating a pair-wise alignment by dynamic programming requires computing an L1 × L2 matrix, where L1
and L2 are the sequence lengths. A trick used in algorithms such as BLAST is to reduce the size of this
matrix by using fast methods to find "diagonals", i.e. short regions of high similarity between the two
sequences. This speeds up the algorithm at the expense of some reduction in accuracy. MUSCLE uses a
technique called k-mer extension to find diagonals. It is disabled by default because of the slight reduction
in average accuracy and can be turned on by specifying the –diags option.

4.8 Anchor optimization
Tree-dependent refinement (iterations 3, 4 ...) can be speeded up by dividing the alignment vertically into
blocks. Block boundaries are found by identifying high-scoring columns (e.g., a perfectly conserved
column of Cs or Ws would be a candidate). Each vertical block is then refined independently before
reassembling the complete alignment, which is faster because of the L2 factor in dynamic programming
(e.g., suppose the alignment is split into two vertical blocks, then 2 × 0.52 = 0.5, so the dynamic
programming time is roughly halved). The –anchors option is used to enable this feature. As with diagonal
optimization, my tests show that anchors result in a very small reduction in average accuracy, so are
disabled by default. This option has no effect if –maxiters 1 or –maxiters 2 is specified.

4.9 Log file
You can specify a log file by using –log <filename> or –loga <filename>. Using –log causes any existing
file to be deleted, –loga appends to any existing file. A message will be written to the log file when muscle
starts and stops. Error and warning messages will also be written to the log. If –verbose is specified, then
more information will be written, including the command line used to invoke muscle, the resulting internal
parameter settings, and also progress messages. The content and format of verbose log file output is subject
to change in future versions.

The use of a log file may seem contrary to Unix conventions for using standard output and standard error. I
like these conventions, but never found a fully satisfactory way to use them. I like progress messages (see
below), but they mess up a file if you re-direct standard error and there are errors or warning messages too.
I could try to detect whether a standard file handle is a tty device or a disk file and change behavior
accordingly, but I regard this as too complicated and too hard for the user to understand. On Windows it
can be hard to re-direct standard file handles, especially when working in a GUI debugger. Maybe one day
I will figure out a better solution (suggestions welcomed).

I highly recommend using –verbose and –log[a], especially when running muscle in a batch mode. This
enables you to verify whether a particular alignment was completed and to review any errors and warning
that occurred.

4.10 Progress messages
By default, muscle writes progress messages to standard error periodically so that you know it's doing
something and get some feedback about the time and memory requirements for the alignment. Here is a
typical progress message.

00:00:23 25 Mb Iter 2 87.20% Build guide tree

7

The fields are as follows.

00:00:23 Elapsed time since muscle started.
25 Mb Peak memory use in megabytes (i.e., not the current usage, but the

maximum amount of memory used since muscle started).
Iter 2 Iteration currently in progress.
87.20% How much of the current step has been completed (percentage).
Build... A brief description of the current step.

The –quiet command-line option disables writing progress messages to standard error. If the –verbose
command-line option is specified, a progress message will be written to the log file when each iteration
completes. So –quiet and –verbose are not contradictory.

4.11 Recommended usage
If I had to recommend a single set of options for all input, it would be these:

muscle -in infile -out outfile -maxiters 2 -verbose -loga logfile

The default parameters give the best average accuracy, but for very large sets of sequences the tree
dependent refinement iterations can be too slow to be practical. The first two iterations should complete in
reasonable time and memory for just about any set of sequences that muscle is capable of aligning at all.
The average accuracy obtained by these parameters is better than CLUSTALW, but alignments are
produced in much less time. For example, on my 2.5 GHz Pentium 4 PC, these options align 1,000
sequences of average length 280 in 140 seconds.

4.12 Large alignments
Suppose you have a large number of sequences, and/or they are very long, and you want to try to do more
than two iterations. There are no hard and fast rules about what to do, and what works best will depend on
your particular sequences, but here are some suggestions.

Use the following options:

muscle -in infile -out outfile -maxiters 9999 -maxhours 24.0
 -verbose -log logfile

Here, I've assumed 24 hours to be the length of time that you are prepared to allocate for this experiment,
you should of course use your own preferred value. See how many iterations muscle completes in the given
time and how you like the quality of the alignment. If muscle failed to finish the third iteration, here are
some things that might speed up the process. Even if it did manage to do three or more, it might be better to
do more iterations with these options enabled versus fewer refinement iterations.

If there are groups of closely related sequences in your set, then using –diags may give you a significant
speed improvement without degrading accuracy.

It may be worth trying –anchors, especially if sequences are long. This can degrade accuracy, but only
rarely, especially when sequences are closely related.

For large numbers of sequences, it can give a significant speed improvement to use –objscore dp. This
reduces the cost of computing the objective score from O(N2) to O(N), where N is the number of sequences.
This option affects only the tree dependent refinement iterations (3, 4, ...).

To test the possible speed improvements due to –diags, –anchors or –objscore dp, you could save the
output from two iterations, then use –refine <savedalignment> –maxiters 1 to request one tree dependent
refinement iteration. You could compare the results of different combinations of parameters for speed and

8

alignment quality, or just try all three together. If you're happy with the time/accuracy trade-off, and want
more iterations, then you can run –refine on the output from the first –refine; you don't need to start from
scratch.

4.13 Global alignment
Like many other multiple alignment programs, including CLUSTALW, MUSCLE constructs global
alignments. This means that there is a built-in assumption that sequences are related over all or most of
their lengths. There is some confusion on this point, and some nonsense has been written about it (even in
the peer-reviewed literature), so I will make some brief comments on it here.

Protein structures are generally constructed from relatively independent units called domains which range
in length from a few tens to a few hundreds of amino acids. Similar domains are often found in different
proteins, in which case the sequences are often believed to be related through evolution by descent from a
common ancestor. I will consider three domains A, B and C, and will represent the sequences for these
three domains as AAAA, BBBB and CCCC. These sequences should be understood as being similar but
not necessarily identical in each protein (with any differences assumed to be due to substitutions, deletions
and insertions accumulated over evolutionary time). A real domain will of course be longer than four letters.
The easiest case is a global alignment of two single-domain proteins, like this.

AAAAA
AAAAA

If two multi-domain proteins have the same domains in the same order, this case is also straightforward for
a global alignment algorithm.

AAAAABBBBBCCC
AAAAABBBBBCCC

Aligning a single domain protein to a multi-domain protein typically works reasonably well:

----BBBBB----
AAAABBBBBCCCC

It has been suggested that global alignment programs can't cope with this because the gap penalties become
very large due to the long missing regions. But when there is a big difference in lengths, the gaps have to
go somewhere, and the correct alignment will often be the one that gets the highest score due to the high
similarity of the domain that is present in the shorter sequence.

Other cases may not be so easy. Suppose domain A is missing in one of the proteins. The correct alignment
is then as follows.

-----BBBBBCCC
AAAAABBBBBCCC

Now suppose B is missing.

AAAAA-----CCC
AAAAABBBBBCCC

Proving that the sequences for the common domains are closely related, these cases are not too hard for a
global alignment algorithm. However, there is an important design issue to consider, which is how terminal
gaps (i.e., gaps extending from the beginning or end of a sequence) are treated by the program. Some
programs allow terminal gaps for free, i.e., no penalties are applied (this is what CLUSTALW does). Then
there is a strong incentive to put gaps at the end rather than in the middle. This can lead to bad alignments
like this.

---AAAACCC---

9

AAAAABBBBBCCC

On the plus side, the terminal-gaps-are-free design is ideal for the case where domain A is deleted in one
sequence and domain C in the other:

-----BBBBBCCC
AAAAABBBBB---

If there are penalties of any kind for terminal gaps, this encourages more compact alignments—which is
generally a good thing, but in this situation may go wrong something like this:

BBBBBCCC
AAAABBBB

If typical affine penalties (gap open + gap length) are applied to terminal gaps, this can lead to a different
kind of mistake by encouraging the fewest possible gaps, regardless of their location. So it may tend to
produce alignments with a gap at one end but not the other:

-------BBBBB
AAAAABBBBCCC

One way to prepare input that is suitable for a global alignment algorithm is to collect data using a local
method (e.g., BLAST or PSI-BLAST), collect locally aligned regions and re-align them using a global
method such as MUSCLE.

By default, muscle penalizes terminal gaps with half the usual penalty, which we believe is a reasonable
design compromise and shows a small improvement over both free and full gaps in our tests. However, as
the above examples show, in particular situations it may be more appropriate to apply different penalties to
terminal gaps. The default can be changed by specifying the –termgapsfull option, which applies full
penalties to terminal gaps. Because of certain technical complications in the MUSCLE algorithm, there is
no option to make terminal gaps free. An option for free terminal gaps may be added in future versions—let
me know if you would find that feature useful.

The moral of this story is that it helps to understand (a) your sequences, (b) something about gap penalties
and the way global and local alignment algorithms work, and (c) some of the more obscure options in the
alignment programs you use.

4.14 Running out of memory
The muscle code tries to deal gracefully with low-memory conditions by using the following technique. A
block of "emergency reserve" memory is allocated when muscle starts. If a later request to allocate memory
fails, this reserve block is made available, and muscle attempts to save the current alignment. With luck, the
reserved memory will be enough to allow muscle to save the alignment and exit gracefully with an
informative error message.

4.15 Troubleshooting
Here is some general advice on what to do if muscle fails and you don't understand what happened. The
code is designed to fail gracefully with an informative error message when something goes wrong, but
there will no doubt be situations I haven't anticipated (not to mention bugs).

Check the MUSCLE web site for updates, bug reports and other relevant information.

 http://www.drive5.com/muscle

Check the input file to make sure it is in valid FASTA format. Try giving it to another sequence analysis
program that can accept large FASTA files (e.g., the NCBI formatdb utility) to see if you get an

10

http://www.drive5.com/muscle

informative error message. Try dividing the file into two halves and using each half individually as input. If
one half fails and the other does not, repeat until the problem is localized as far as possible.

Use –log or –loga and –verbose and check the log file to see if there are any messages that give you a hint
about the problem. Look at the peak memory requirements (reported in progress messages) to see if you
may be exceeding the physical or virtual memory capacity of your computer.

If muscle crashes without giving an error message, or hangs, then you may need to refer to the source code
or use a debugger. A "debug" version, muscled, may be provided. This is built from the same source code
but with the DEBUG macro defined and without compiler optimizations. This version runs much more
slowly (perhaps by a factor of three or more), but does a lot more internal checking and may be able to
catch something that is going wrong in the code. The –core option specifies that muscle should not catch
exceptions. When –core is specified, an exception may result in a debugger trap or a core dump, depending
on the execution environment. The –nocore option has the opposite effect. In muscle, –nocore is the default,
–core is the default in muscled.

4.16 Technical support
I am happy to provide support. But I am busy, and am offering this program at no charge, so I ask you to
make a reasonable effort to figure things out for yourself before contacting me.

5 Command Line Reference

Value option Legal values Default Description
anchorspacing Integer 32 Minimum spacing between anchor columns.

cluster1
cluster2

upgma
upgmb
neighborjoining

upgmb Clustering method. cluster1 is used in iteration
1 and 2, cluster2 in later iterations.

distance1

kmer6_6
kmer20_3
kmer20_4

Kmer6_6 Distance measure for iteration 1.

distance2

kmer6_6
kmer20_3
kmer20_4
pctid_kimura
pctid_log

pctid_kimura Distance measure for iterations 2, 3 ...

gapopen Floating point [1] The gap open score. Must be negative.

in Any file name standard input Where to find the input sequences.

log File name None. Log file name (delete existing file).

loga File name None. Log file name (append to existing file).

maxiters Integer 1, 2 ... 16 Maximum number of iterations.

maxtrees Integer 1 Maximum number of new trees to build in
iteration 2.

minbestcolscore Floating point [1] Minimum score a column must have to be an
anchor.

objscore sp
ps
dp

sp Objective score used by tree dependent
refinement.

11

Value option Legal values Default Description
xp sp=sum-of-pairs score.

dp=dynamic programming score.
ps=average profile-sequence score.
xp=cross profile score.

out File name standard output Where to write the alignment.

root1
root2

pseudo
midlongestspan
minavgleafdist

psuedo Method used to root tree; root1 is used in
iteration 1 and 2, root2 in later iterations.

smoothscoreceil Floating point [1] Maximum value of column score for
smoothing purposes.

smoothwindow Integer 7 Window used for anchor column smoothing.

SUEFF Floating point
value between 0
and 1.

0.1 Constant used in UPGMB clustering.

weight1
weight2

none
henikoff
henikoffpb
gsc
clustalw
threeway

henikoffpb

Sequence weighting scheme.
weight1 is used in iterations 1 and 2.
weight2 is used for tree-dependent refinement.
none=all sequences have equal weight.
henikoff=Henikoff & Henikoff weighting
scheme.
henikoffpb=Modified Henikoff scheme as
used in PSI-BLAST.
clustalw=CLUSTALW method.
threeway=Gotoh three-way method.

Flag option Set by default? Description
anchors no Use anchor optimization in tree dependent refinement

iterations.

core yes in muscle,
no in muscled.

Do not catch exceptions.

le yes Use log-expectation profile score (VTML240). Alternatives
are to use –sp or –sv.

msf no Write output in MSF format (default is to use FASTA).

nocore no in muscle,
yes in muscled.

Catch exceptions and give an error message if possible.

quiet no Do not display progress messages.

refine no Input file is already align, skip first two iterations and begin
tree dependent refinement.

sp no Use sum-of-pairs profile score (PAM200). Default is –le.

sv no Use sum-of-pairs profile score (VTML240). Default is –le.

12

13

Flag option Set by default? Description

termgapsfull no Terminal gaps penalized with full penalty.

termgapshalf yes Terminal gaps penalized with half penalty.

termgapshalflonger no Terminal gaps penalized with half penalty if gap relative to
longer sequence, otherwise with full penalty.

verbose no Write parameter settings and progress messages to log file.

Notes
[1] Default depends on the profile scoring function. To determine the default, use –verbose –log and check
the log file.

	Introduction
	Quick Start
	Installation
	Making an alignment
	Large alignments
	Fastest speed
	Accuracy: caveat emptor
	Pipelining
	Refining an existing alignment

	File Formats
	Input files
	Output files

	Using MUSCLE
	How the algorithm works
	Command-line options
	The maxiters option
	The maxtrees option
	The maxhours option
	The profile scoring function
	Diagonal optimization
	Anchor optimization
	Log file
	Progress messages
	Recommended usage
	Large alignments
	Global alignment
	Running out of memory
	Troubleshooting
	Technical support

	Command Line Reference

